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Research is needed to determine the microscopic origins of material instability. A
microscopic investigation becomes the rational means to examine shear band instability

which has a thickness of several grains (i.e., microscopic dimension).

Research objectives and report organization

Many continuum theories and numerical simulations have been proposed to describe
shear band instability; however they rely on semi-intuitive arguments not always

founded on physical observations on particulate media. The main research objective is to
investigate the physical origins of shear band instability in particulate media, and the
assumptions of higher-order continuum theories proposed to account for instabilities in
granular media. The particular research objectives were (1) to review the work in
computational granular mechanics relevant to the formation of shear bands in granular
media, (2) to explore a critical micro-macro transition relevant to material instability (i.e.,
stress symmetry), and (3) to devise laboratory experiments for generating useful

experimental data sets relevant to material instability.

This document is organized in three sections. Following the introduction and research
background, the first section reviews past work on computational granular mechanics.
The second section investigates the transition between discrete and continuous fields, and
especially the symmetry of stress tensors in granular media. The third and last section

summarizes the experimental work on discrete models.
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PART I. GRANULAR MECHANICS

Introduction

The first discrete modeling of soils can be traced to Hertz (1882) who formulated a
contact law between spheres, and Reynolds (1885) who proposed a dilatancy theory.
Dantu (1957) and Schneebli (1955) idealized real soils as assemblies of rigid rods, and
noticed some striking similarities between the mechanical responses of these mechanical
analogs and real soils. Duffy and Mindlin (1957), Deresiewicz (1958), and Thurston and
Deresiewicz (1959) examined the response of soil models made of spheres. Biarez (1962)
used glass beads and duralumium rods to examine the elastic and limit response of soils,
and applied his observations to analyze practical problems in geotechnical engineering.
These pioneer works were later followed by photoelastic investigations (e.g., Drescher,
1976; and Descher and Josselin de Jong, 1972) to visualize stresses within granular

media.

The discrete modeling of soils benefited substantially from the development of computers
in the 1970's. The computational discrete modeling of soils can be attributed to Cundall,
who developed the computer code BALL (Cundall and Strack, 1978-79). At this time,
computers had very limited capabilities, comparable to those of today's hand-held
calculators. They were slow, and had limited memory and storage capacity. Yet, Cundall
developed BALL, a program which many researchers still use. The program is fully
documented in a two-volume report to the US National Science Foundation (Cundall and
Strack, 1978-79). Since 1978, many researchers have adapted the original version of
BALL to solve specific problems. Researchers have realized the power of computer
simulations to understand the mechanics of granular materials. The major advantage of
computations over real experiments is the generation of abundant information on particle
displacements, contact forces and other physical quantities, which can be processed

rapidly to comprehend the physics of granular assemblages.

This chapter reviews the basics of the discrete modeling of granular media, with the

intent of providing readers with some understanding of granular material behavior based
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on the first principles in mechanics and computational methods. Three particular aspects
of computational granular mechanics will be covered: (1) physical modeling of granular
media, (2) numerical methods for computational granular mechanics, and (3) transitions
from discrete to continuous media. Before going into these subjects, we will first try to
answer the following questions. What exactly is discrete modeling? What are the
applications of discrete modeling? Has discrete modeling any advantages over continuum
mechanics? What are the limitations of discrete modeling? What are the main

computational tools in discrete modeling?

Examples of discrete modeling in soil mechanics

Discrete modeling can best be described by considering two particular examples: one is

relevant to the study of constitutive behavior, and the other to the failure of foundations.

Example 1

As shown in Fig. 1, the sample was constructed with 1848 cylindrical rods of diameter 4,
6 and 8 mm. There are 1040 particles of 4-mm diameter, 532 of 6-mm diameter, and 266
of 8-mm diameter. The sample slenderness ratio is 2.43. The rods were made of identical
transparent acrylic material, which has an average density of 1.30 g/cm3 , and were cut to
a 10-cm length. Their front ends were half painted in black to visualize their rotation and
displacement simultaneously. Figures 1 and 2 show the experimental setup. The sample is
enclosed in a 0.15-mm thick transparent latex membrane with two circular loading
platens at the top and bottom. The membrane is clamped to the platens with compression
rings. During the sample fabrication, the membrane is stretched on a rectangular mold,
and the rods are manually positioned inside the mold with their axis parallel to one
another. During the test, the specimen is subjected to a vacuum inside the membrane,
which is equivalent to applying an external constant confining pressure equal to 95 kPa.
The axial compression is applied by raising the lower platen at the constant rate of 5.6
mm/min, while the upper platen remains fixed. Figure 2 shows a side view of the
experimental setup. The photograph of Fig.1 was obtained by using a 35-mm camera
positioned approximately one meter in front of the sample, with its aim perpendicular to

the front of the sample. The particles were lighted from behind by using a light box. The
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sample was tested by increasing the axial strain while keeping the confining pressure

constant. The stress-strain curve is shown in Fig. 3. The axial strain £ is

e= AWhy (1.1
where Ah is the vertical displacement of the lower platen, and 4, is the initial sample

height. The axial stress G is

o=F/Ay (1.2)

where F is the measured axial load, and 4, is the initial cross-sectional area. The Initial

Young's modulus was 300 MPa, and the peak friction angle was 18.4 deg.

-
Figure 1. An assembly of cylindrical rods subjected to axial compression.

4
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Figure 2. Side view of experimental setup for axial compression of sample in Fig. 1.
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Figure 3.  Stress-strain response of sample shown in Fig. 1 (the confining pressure is 95
kPa).

Example 2

Figure 4 shows an early example of the application of discrete modeling for
understanding the failure mechanism under shallow footing (Lambe and Whitman, 1979).

This photograph was taken by using a slow shutter speed, which blurs the moving
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particles. It shows the pattern of motion at failure within a stack of duralumium rods
loaded by a rigid punch. The rods are 150-mm long and are of two shapes and sizes
(round, 3 mm and 6 mm diameter; and hexagonal 4.8 and 7,9 mm across flats) to
simulate the interlocking which occurs in actual soils. Additional examples of discrete
models for understanding the failures of foundations and retaining walls can be found in

(Biarez, 1962).

%
X84 2

Figure 4. " Failure zone under a shall;) fouridatioﬁ (Lambe and Whitman, 1979).
Applications of discrete modeling in engineering and applied sciences

One may attempt to survey the applications of discrete modeling in engineering and

applied sciences by consulting the proceedings of the following conferences:
(1) the 1% International Conference on Powders and Grains (Biarez and Gourves, 1989);
(2) the 2™ International Conference on Powders and Grains (Thornton, 1993);

(3) the 3" International Conference on Powders and Grains (Behringer and Jenkins,
1997);

(4) the 1** US Conference on Discrete Element Methods (Mustoe et al., 1989); and

(5) the 2" International Conference on Powders and Grains (Wiliams and Mustoe,
1993).
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Discrete modeling is used for many applications in engineering and applied sciences. A

review of the literature on discrete modeling, which is by no means exhaustive, indicates

that past work can be sorted in the following general categories:

Experimental studies of granular media: (e.g., Biarez, 1962; Dantu, 1957; Drescher,
1976; Drescher and Josselin de Jong, 1972; Meakin and Skeltorp, 1993; Nakase et al.,
1992; Oda, 1972-1973; Subbash et al., 1991; Sukla and Rossmanith, 1982; and Supel,
1985).

Studies of contact between particles: (e.g., Anandarajah, 1994; Azarkhin, 1988;
Bardet and Huang, 1992; Bentall and Johnson, 1967; Carter, 1926; Deresiewicz,
1958; Doménech et al., 1987; Fabrikant, 1986, 1988; Foerster et al., 1994; Goodman,
1962; Hertz, 1882; Jagota et a., 1997; Johnson et al., 1997; Johnson, 1958, 1985;
Kalker, 1979, Lecornu, 1905; Lee, 1966; Lesbur et al., 1997; Mindlin, 1949, Mindlin
and Deresiewicz, 1953; Misra, 1995; Reynolds, 1885, 1895; tabor, 1955; Vermeulen
and Johnson, 1964; Wells, 1997; Witters and Duymelinck, 1986).

Numerical techniques for discrete modeling: (e.g., Bardet and Proubet, 1991; Bashir
and Goddard, 1991; Borja and Wren, 1995; Chang and Misra, 1989; Cundall, 1988,
1989; Cundall and Strack, 1979; Ghaboussi and Barbosa, 1990; Goddard et al., 1993;
Hahn, 1988; Hart et al., 1988; Jean, 1995; Jean and Moreau, 1996; Kishino, 1988;
LaBudde and Greenspan, 1976; Meakin and Skeltorp, 1993; Moreau, 1966, 1988,
1994, 1995; Mujinza et al, 1993; O'connor et al., 1993; Papadrakakis, 1981; Park and
Underwood, 1980; Ting, 1992; Ting and Corkum, 1992; Ting et al., 1989, 1993;
Trent and Margolin, 1992; Underwood, 1983; Underwood and Park, 1980; Walton,
1980, 1983; Walton and Braun, 1986; Walton et al., 1988; Williams and Mustoe,
1987; Zhuang and Goddard, 1993; Zhuang et al., 1995).

Elastic behavior of granular media: (e.g., Bathurst and Rothenburg, 1988; Chang et
al., 1990; Changet al., 1995; Dubujet etal., 1997; Horne, 1965, 1969; Johnson et al.,
1997).
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e Failure of granular media: (e.g., Chang, 1993; Sun and Thornton, 1994; Thornton,

1979).

Stress-strain behavior of granular media: (e.g., Bardet, 1994; Bathurst and
Rothenburg, 1990; Chang, 1993; Chang and Liao, 1990; Chang and Misra, 1990;
Chang et al., 1992; Christoffersen et al., 1981; Cundall et al., 1982; Daudon et al.,
1997; Deresiewicz, 1958; Dobry and Ng, 1992; Duffy and Mindlin, 1957; Houlsby,
1981; Ke and Bray, 1995; Koenders, 1987; Krawietz 1982; Laalai et al., 1995; Lun
and Bent, 1993; Matsuoka and Yamamoto, 1994; Mehrabadi et al., 1993; Nemat-
Nasser and Mehrabadi, 1984; Ng and Dobry, 1994; Ng, 1992; Reynolds, 1895;
Rothenburg and Bathurst, 1989, 1991, 1992; Rowe, 1962; Tatsuoka et al., 1990;
Thornton, 1979, 1994; Thornton and Randall, 1988; Thornton and Sun, 1994;
Thurston and Deresiewicz, 1959; Weber, 1996).

Higher-order continuum theories:
e Second order gradient continuum: (e.g., Chang and Gao, 1995).

e Micropolar continuum: (e.g., Bardet and Proubet, 1992; Bardet and Huang, 1992;
Chang and Ma, 1991; Diepolder et al., 1991; Kanatani, 1979; Sternberg, 1968).

Strain localization and shear bands: (e.g., Bardet and Proubet, 1991, 1992; Cundall,
1989, Desrues, 1984, Desrues and Duthilleul, 1984; Desrues et al., 1985; Moreau,
1996; Miihlhaus and Vardoulakis, 1987; Nakase et al., 1992; Oda, 1993; Oda et al.,
1997).

Powders and sintering processes: (e.g., Aizawa et al., 1993; Greening et al., 1997;

Hong, 1997; Lian et al., 1997; Tamura and Aizawa, 1993).
Suspension: (e.g., Goddard, 1977, 1986).

Granular Flow: (e.g., Foerster et al., 1994; Campbell and Brennen, 1985; Savage and
Jeftrey, 1981).
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o Fluid and solid mixtures, including fluidized beds: (e.g., Kawaguchi et al., 1995;
Sudji et al, 1992, 1993; Tsuji, 1997).

o Rock mechanics: (e.g., Bardet and Scott, 1985; Cundall, 1971, 1981, 1988; Shi, 1993;
Shi and Goodman, 1988, 1989).

e Physics of granular media: (e.g., Clément et al., 1992; Knight et al., 1993; Manna
and Herrmann, 1991; Meakin and Skeltorp, 1993; Meftah et al., 1993; Radjai et al.,
1996).

Discrete and continuous modeling

Continuum mechanics is a powerful approach to solve scientific and engineering
problems. It is based on mathematical assumptions, which are well described in the
continuum mechanics literature (e.g., Eringen, 1967; Truesdell, 1985). It formulates
engineering problems as mathematical boundary value problems (BVP). The main
components are the governing equilibrium equations (i.e., partial differential equations
translating basic physical balances, such as stress equilibrium); the boundary conditions
(prescribed values of the unknown quantities or their derivatives on external surfaces);
and the constitutive equations (generalized relation between stress and strain, or their
respective rates). In the past 20 years, the continuum approach has been implemented
using finite elements and finite differences, and has successfully been applied to solve

engineering problems (e.g., Zienkiewicz and Taylor, 1991).

One of the major assumptions of continuum mechanics is that the material properties can
be scaled from small laboratory samples to large material masses using constitutive
relations. Researchers have now produced a myriad of constitutive relations for various
types of engineering materials. Many constitutive models are clever fittings of
experimental results in the laboratory. Unfortunately, most models are not based on

physics.

Through the use of bifurcation theory, the continuum approach was discovered to exhibit
problems, especially associated with the loss of uniqueness of boundary value problems.

The problems mainly result from local material instability and limitations of constitutive
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equations (e.g., Vardoulakis and Graf, 1985). These findings questioned some
applications of continuum mechanics to soil mechanics, and pointed out the need for
seeking a fundamental understanding of material behavior. Discrete modeling can be of
great help to continuum mechanics, for not only developing constitutive models based on
physics, but also for understanding the physical origins of material instability, and the

limitations of continuum mechanics.

Limitations of discrete modeling in soil mechanics

Discrete modeling has obvious limitations in soil mechanics. The sheer number of
individual soil particles, especially those with smaller diameters, within soil masses of
practical interest to engineering, prohibits the simulation of their overall response even
with the most advanced computers. For instance, in a cubic centimeter of soil, there may
be as many as 5x10' clay particles, when those are assumed to be identical square
platelets (1-um x 1-um x 0.1-um), and the void ratio is equal to one. Therefore, the
largest computers yet built would not be sufficient to handle 1 cm? of fine-grained soils,
which is quite irrelevant for engineering purposes. The number of soil particles in a
volume decreases roughly with the cube of the particle size. In a cubic centimeter, there
may be as many as 1,000 particles of coarse sand, when those are assumed rounded with
1-mm diameter and the void ratio is still equal to one. Yet again, the most powerful
computers of today, with numerous parallel processors, would have extreme difficulty

handling 1 m?® of coarse sand, which corresponds to 1x10° particles.

In view of the excessively large number of particles in soils, it seems more feasible to
combine the advantages of discrete modeling and continuum mechanics to solve
engineering problems. In summary, discrete and continuum mechanics should be
perceived as complementary, not adversary, tools in soil mechanics to understand the

mechanics and physics of soil behavior.

Numerical methods for discrete modeling

The main numerical tool of discrete modeling is the discrete element method (Cundall
and Strack, 1979). Cundall (1989) proposed that this appellation apply to a computer

program only if it (a) allows finite displacements and rotations of discrete bodies,
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including detachment, and (b) recognizes new contacts automatically as the calculation
progresses. To my knowledge, there are eight main classes of numerical methods

corresponding to this definition.

1. Distinct element methods (DEM). These methods use explicit and time-marching
algorithms to solve the equation of motion. Bodies may be rigid or deformable, but
contacts are always deformable. Examples of DEM codes are TRUBAL (Cundall,
1988); UDEC (Cundall, 1980); 3DEC (Hart et al., 1988); DIBS (Walton, 1980);
3DSHEAR (Walton et al., 1988); and JP2 (Bardet and Proubet, 1989). In granular
statics, DEM calculates the equilibrium states of particle systems by using dynamic
transitions, the convergence of which are generally accelerated and optimized by
introducing an artificial viscous damping. Such optimizations include density scaling

(Cundalll, 1982) and adaptative dynamic relaxation (Bardet and Proubet, 1991).

2. Modal methods. These methods, which are similar to DEM in the case of rigid bodies,
use modal superposition for deformable bodies, (e.g., Williams and Mustoe, 1987). A
representative code is CICE (Hocking et al., 1985).

3. Discontinuous deformation analysis (DDA). In DDA (Shi, 1993), contacts are rigid,
and bodies may be rigid or deformable. The condition of no-interpenetration is
achieved by an iteration scheme; the body deformability comes from superposition of

strain modes.

4. Momentum-exchange methods. The contacts and bodies are both rigid: momentum is
exchanged between two contacting bodies during an instantaneous collision.
Frictional sliding can be represented (e.g., Campbell and Brennen, 1985; Hahn,

1988).

5. Multibody Dynamics methods (MDM). Moreau (1966) treats the problem of non-
penetrability by using Convex Analysis. The unilateral mechanical constraints of
frictional non-penetrability are mathematically formulated in (Brogliato, 1996;
Delassus, 1917; Moreau, 1966, 1988, 1993, 1994, 1995; Pfeiffer and Glocker, 1966).

MDM was implemented in (Jean, 1995) using an implicit algorithm, and was applied
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by several investigators to examine various aspects of particulate behavior (e.g.,
Daudon et al., 1997). MDM considers only purely rigid bodies, and ignores the

deformability of individual grains and contacts.

. Structural Mechanics methods (SMM). These methods derive from the numerical

techniques used in computational mechanics, especially finite element methods for
continuum plasticity and contact mechanics (e.g., Borja and Wren, 1995; Kishino,
1988; Zienkiewicz and Taylor, 1991). The equilibrium equations for the system of
particles are solved quasi-statically, and not dynamically, which eliminates the
spurious oscillations of dynamic relaxation. SMM obtain the incremental transition
between equilibrium states by relying on a tangential stiffness matrix, which is
determined from the local contact stiffness between particles. Unfortunately, this
tangential operator consumes a large amount of computer memory, rendering it
inapplicable to large numbers of particles, and often becomes singular and causes
numerical problems. However, SMM guarantees a strict convergence, when the
physical problem has a solution, and is capable of detecting bifurcation points. This
approach, which benefits from the progress in finite element methods for structural
and continuum mechanics (e.g., Bathe, 1996; Zienkiewicz and Taylor, 1991), reveals
that there are many similarities between the numerical techniques in finite and

discrete element methods.

. Mean Field method (e.g., Bashir and Goddard, 1991; Zhuang et al., 1995). The

transitions between static states are calculated by imposing a mean field of
displacement and rotation to the particles, and by restoring a new equilibrium
configuration by means of incremental motions or "fluctuations" of each particle
about the mean. The fluctuating motions of individual particles are determined
statically by a global stiffness matrix, which is determined from the local contact
stiffness between particles, as in structural mechanics. The problems arising from the
matrix singularity are overcome by solving the linear equations with the well-known

relaxation method (Southwell, 1940).
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8. Energy minimization method (e.g., Chichili et al., 1993). The transition between static
states is obtained by incorporating the geometric constraints of non-penetrability,
Mohr-Coulomb friction criterion for relative sliding, and a minimization function that
translates the energy dissipated at the contacts due to internal friction. The
interparticle forces are calculated at each time step by using an explicit finite

difference scheme based on linear programming technique.

Following the classification in (Cundall, 1989), Fig. 5 summarizes the attributes,

advantages and shortcomings of the methods listed above, which include:

. contact and body stiffness
. number and shapes of bodies
. capabilities of fracturing individual particles

. packing density
. amplitude of displacement and strain, and
. static and dynamic capabilities.

A shown in Fig. 5, the method performances are grouped in three categories, ranging
from good to not applicable. At the present, it is difficult to conclude on the superiority of
a particular method, due to a lack of in-depth comparative studies. In this chapter, we will
not cover all these methods, but will only introduce the basics of discrete element

methods.

Physical modeling of granular media

Geometry of grains

As described in soil mechanics textbooks (e.g., Bardet, 1997; Lambe and Whitman,
1979), soil grains have irregular and various shapes including spheres, ellipsoids,

platelets, cylinders, and tubes, when they are observed with the naked eye and

microscopes. Their wide range of grain sizes vary from colloids (<1 um) to boulders
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(>100 cm). The diversity of grain shape, size, distribution, and structures are one of the

major causes of the multiplicity of soil behavior observed in the laboratory and the field.

For the sake of simplification, hereafter we idealize soil grains as two-dimensional rods.
This convenient assumption obviously departs from reality. However, it is sustainable as
long as it provides us with some useful hints about material response. Some researchers
have already moved to 3D geometry, and are getting new insights into material behavior
(e.g., Thornton and Sun, 1994). 2D models are educational for a first hands-on experience

of granular mechanics. Many 2D concepts can readily be extended to 3D modeling.
Particles

As shown in Fig. 6, the set B represents a generic assembly of N rigid particles with

nonlinear interaction at contacts, i.e., B ={l,..., N}. The particles, which are subjected to
external forces and moments excluding body forces, belong to the set B, ={N,,..., N},

and the remaining ones belong to the set B;. The sets B; and B are complementary, i.e.,

B=B,UB,.
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Figure 5. Attributes of the various classes of discrete element methods (adapted from
Cundall, 1989).

The particles are assumed rigid (i.e., they cannot deform). The assumption of rigid
particles will be discussed later. The conservation of mass implies that B is constant, i.e.,
no rigid particle should be lost. Some particles of B; may become part of Bg
forces/displacement. However B; and Bg can vary, provided that they remain

complementary.
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Figure 6. An assembly of discrete particles.

Cylindrical particles are defined by their radius and mass per unit area. Elliptical particles
have an additional property to characterize their aspect ratio. The positions of rigid
particles, irrespective of their shapes, are defined by the center position and their rotation

6. The motion of set B is therefore characterized by 3N independent variables.

The kinematics of the granular media is completely defined by a finite number of degrees
of freedom. There is no need to use continuous interpolation functions to represent the
kinematics, unlike in finite elements. Indeed, a continuous interpolation between discrete
points would be inappropriate for granular media because the displacement is

discontinuous at the particle contacts.
Contacts

Contact mechanics (e.g., Johnson, 1985) is a vast subject, which is beyond the scope of
this chapter. We will only introduce the basic concepts required in DEM. With the
exception of body forces which are applied at the particle contacts, the external and
internal forces acting on particles are assumed to be applied at points and not to be

distributed on surfaces. There are M contact points belonging to the contact set C, i.e., C=
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{1, ..., M}. These contacts can be subdivided between the set I, /= {1, ..., M}, which
corresponds to contact between particles of B, and the set E, I= { My, ..., M}, which

describes the points of application of external concentrated actions. The sets / and E are
complementary, i.e., C=1UE ={l,...,M}. By definition, the sets I, and E, represent
the contact points of 7 and E on particle a, respectively. The subsets I, and E, have the

following properties:

1={J1, and E=|JE, 1.1
acB aeB
and

E,NnE, =0 and I,nI,={c} forV azbe B (1.2)

Equation 2 implies that two different sets J, have at most one point in common. The
number of contacts may vary during a deformation process, i. €., I varies depending on

the state of B.

Contact detection

In the case of spherical or cylindrical particles, there is a contact between particles a and

b when the following criterion is met:

x, - %, = (7 —x! ] <RZ+R; (1.3)

where x”and x are the center position of particles a and b, and R, and R, their radii,

respectively. The contact detection criterion becomes more complicated for elliptical

(e.g., Ting, 1992) and polygonal (e.g., Cundall, 1980, 1988) particles.

For large numbers of particles, the detection of contacts becomes a serious computational
issue in granular mechanics. The most naive method for detecting contacts consists of
applying Eq. 3 N-1 times for each ball of an assembly of N particles. There are therefore
Nx(N-1) searches, a task which may rapidly consume a large fraction of the calculation
time. For instance, the computer would make 10° searches for 10° particles, but 10'
searches for 10° particles, which is an excessively large number of calculations. Several

detection algorithms have been proposed. The most efficient ones are N logN (e.g.,
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Mujinza et al., 1993). We will present one of the most commonly used algorithms (e.g.,

Cundall and Strack, 1979).

As shown in Fig. 7, the space is divided in a uniform grid forming square boxes. The box
size is larger than the diameter of the largest particles, so that no particle covers more
than four boxes at once. Assuming that there is a maximum number of M particles per
box, the maximum number of searches is 4NM as a single particle may cover 4 boxes at
once. This search technique requires associating boxes and particles, and updating this

association when particles move across the grid.

This simple search technique becomes less efficient when M increases, which is the case
when the particles have a wide range of sizes. In these cases, one may consider alternate

contact algorithms.

Contact geometry

The contact geometry of rigid cylindrical particles is defined as shown in Fig. 8. In
theory, for rigid particles which do not overlap, the contact is reduced to the point of
tangency between two particles (Fig. 8a).

Xo = Ry X, + Ry Xz 1.4)
R,+R; R,+R,

For particles which overlap slightly, the contact geometry is no longer a point but
becomes a surface. However, this contact area will be reduced to a point (Fig. 8b)

defined as follows:

1 R,-R, 1 R,-R,
| o-A B Kk 4| —+ 1.5
Xe (2 AB }"’ (2 AB B (1.5)

For rigid cylindrical particles, the contact point becomes the tangency point (i.e., Eqs. 4

and 5 coincide). In the case of elliptical or polygonal particles, the contact point is more
difficult to define as described for elliptical (Ting, 1992) and polygonal particies
(Cundall, 1988).
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Figure 7. Uniform grid used for detection of contact between two particles.

Figure 8. Contact point between two cylindrical particles without and with overlap.

Contact kinematics
The kinematics of the contacts characterizes the relative motion between the particles. As

shown in Fig. 9, the relative displacement of particles a and b at contact point ¢ is:

Auf =ul —uj +ey, (wfrk"” —a);'rk”c) (1.6)

1

where ¢ is the displacement vector of particle center, ¢ the rotation of particles located

at x;, and

re=xt—x? and r=x’-x .7

H 1
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The relative rotation of particles a and b:

A0 =0’ -0 (1.8)

i 1 1

In the case of cylindrical particles,

r® =R n, r*=-R,;n’, o° =w,n;, and o} =w,n; 1.9

i a’ti v i i

where n° is the unit vector normal to the contact area:

ng =(x - %7 )R, == (x; - xR, (1.10)
Equation 6 becomes:

Au; =u,” —u —n§(a)aRa +a)bRb)

(1.11)
Au; =u§ -uy +n,°( R, +cobRb)

Figure 9. Relative displacement between two particles.

Equation 6 describes exactly the relative displacement between two particles which do
not overlap (i.e., AB = R, + R;). However, Eq. 6 becomes approximate in case of overlap
(i.e., AB< R+ Ry). Fortunately, this overlap is usually very small in most cases, and is

thought to have no significant consequences.

Contact actions

The actions at contact ¢ are represented by contact forces f,* and contact moments m;*.

Both forces and moments are applied at the contact points. In many instances, the contact
moments are neglected, and the contact actions are reduced to forces alone. This

assumption may apply to small contact areas between cylindrical and spherical particles,
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which cannot transmit significant moments due to their small size. However, this
assumption may become questionable for particles of arbitrary shapes and large normal

contact forces.

Contact relations

Various types of contact relations between particles were recently reviewed in (Misra,

1995), including contacts between smooth, spherical, non-spherical, cylindrical, and non-
cylindrical elastic particles with friction and surface adhesion, rough elastic particles, and
viscous bridge. Hereafter, we will only review the normal stiffness between spherical and

cylindrical particles, and some findings on contacts with friction.

Elastic contact between smooth particles

The distribution of contact pressure proposed by Hertz (1882)] is:

p(r)= po\1-(r/a) (1.12)

where py is the maximum contact pressure, a is the radius of the circular contact area, and

r is the polar coordinate. The total load P is related to the contact pressure through:
a 2 2
P= jo p(r)2mrdr = pyma (1.13)

Therefore the maximum pressure py is 3/2 times the mean pressure p,,. The radius of the

contact area is:

a=nmp,R/I2E =s‘/fgf (1.14)

where:

1.1 (1.15)
Rl RZ

In the case of identical elastic properties, E = E/2(1-V?). The mutual approach of distant

points in the two solids is:
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2 2
6—_-7tap0/2E'=3R—=3169£E,2 or 1r’=i;-15‘1e2(5/13)3/2 (1.16)

The secant normal stiffness £, is therefore load-dependent:
k,,=§=%E‘x/_I€x/§=3 %E'PR (1.17)

In the case of cylindrical solids, the half-width of the contact area is:

4PR
a= }__ 1.18
— (1.18)

where P is now a force per unit length (i.e. [P]=F L. The maximum contact pressure
is:

2P 4 PE’
Po=—"=—"Pn= (1.19)
ma 7R

The relative displacement & is given in (Johnson, 1985):

5 =L _(LnlanrE" /P)-1) (1.20)
nE
The secant normal stiffness &, is therefore load-dependent:

g =L _ nE (1.21)

" 6§  Ln(4nRE"/P)-1

Figure 10 shows the variation of normal load P with normal relative displacement §in
the case of spherical and cylindrical contact. Figure 11 shows the corresponding secant
normal stiffness k,. The relative displacement & is normalized with the particle radius R.
The normal load P is normalized with RE* for cylindrical particles and RE*? for
spherical particles. In the two-dimensional case (i.e., cylinder), [P]= FL, and in the

three-dimensional case (i.e., sphere) [P]=F.
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Figure 10. Variation of normal load with relative displacement &/R for cylindrical (2D)
and spherical (3D) particles

1.2

1 -
0.8
0.6 A

ko/E* or ko/RE*

0.4 -
———2D (ka/E*)

------- 3D (ko/RE*)
0.001 0.01 0.1 1
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0.2 1

Figure 11. Variation of normal secant stiffness corresponding to Fig. 10.

Table 1 lists typical values of elastic properties for various particle materials. These

values are useful to define realistic values of contact stiffness between particles.
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Table 1. Elastic properties for particle materials (after (Bardet, 1997; Johnson, 1985).

Material Young's modulus (Gpa) Poisson ratio
Perpex 3 0.38
Glass 55 0.25
Steel 200 0.28-0.29
Aluminium 55-76 0.34-0.36
Duraluminium 74 032
Cast Iron 113 0.25
Tungsten Carbide 732 0.22
Amphibolite 93-121 0.28-0.30
Anhydrite 68 0.30
Diabase 87-117 0.27-0.30
Diorite 75-108 0.26-0.29
Dolomite 110-121 0.30
Dunite 149 - 183 0.26-0.28
Feldspathic Gneiss 83-118 0.15-0.20
Gabbro 89-127 0.27 - 0.31
Granite 73 - 86 0.23-0.27
Limestone 87-108 0.27-0.30
Marble 87 -108 0.27-0.30
Mica Schist 79 -101 0.15-0.20
Obsidian 65 - 80 _ 0.12-0.18
Oligoclasite 80 -85 0.29
Quartzite 82-97 0.12-0.15
Rock salt 35 025
Slate 79-112 0.15-0.20
Ice 7.1 0.36

Deformable and rigid particles

As previously mentioned, soil particles were assumed to be rigid and the contact

deformable. However, in reality, soil particles are not rigid; they deform when they are

- Page 28 -




subjected to contact forces. The assumption of rigid particles and deformable contacts is
acceptable as long as the contact deformations represent the particle deformations. This
condition may be met for particles with simple geometry (e.g., spheres and cylinders)
undergoing elastic deformations. However, this condition may not be met for complex
deformation patterns and inelastic deformation, and distributed contact loads (e. g.,
Cundall, 1989). The case of deformable particles is not considered hereafter. One may

refer to Cundall (1980) and Shi (1982) to account for elastic deformation of particles.

We will illustrate the fact that the contact deformation may represent the particle
deformation in some simple cases. This will be demonstrated by considering the
compression of the cylinder of Fig. 12, which is subjected to diametrically opposed

concentrated forces.

The stress distribution in the cylinder is given in Timoshenko and Goodier (1951). The

stresses at point A are:

Pl 1 2(a,2+222)+4z P|1 2 2

6, =—|—-—————=+—|and 0o, =——~ - (1.22)
T\ R g’\al+7° a; Z|R 2R-z g’ +7?
In plane strain, the vertical strain is:
2
e, =1V (6 -V o, (1.23)
E 1-v
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Figure 12. Compression of a cylinder due to diametrically opposed concentrated loads.

The compression of the upper half of the cylinder O;C is found by integrating &; from z =

0 to z = R, where a <<R, to give:
(R _ P -v}) B
S, = jo £,dz = —”E———(2Ln(4R/a1) 1) (1.24)

A similar expression is obtained for the compression of the lower half of the cylinder so
that the total compression of the diameter through the mid-points of the contact areas
0,0; is:
2P(1-v?
5= ——(———)(Ln(4R/a1 )+ Ln(4R/a,)-1) (1.25)
Equation 25 can be used to derive Eq. 20. As clearly indicated by Eqgs. 22 to 25, the

contact stiffness originates from the particle deformation. In this particular case, the

contact deformation accounts for the particle deformation.

Frictional contact

In soil mechanics, the frictional characteristics between two particles is commonly
thought to be a basic material property, which can easily be determined from laboratory

experiments and tables of physical constants. However, this common belief is
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unfortunately unfounded. The determination of friction between two particles is still a
complicated problem as described in Singer and Pollock (1992). As shown in Table 2, the
values of friction angle ¢, vary not only with mineral type but also on the contact

cleanliness, water content, and level of normal load.
Contact models

Several relations were proposed for relating the contact actions and contact kinematics.
We will review only two basic ones: the elastic-perfectly plastic relations with and

without rotational stiffness and friction.

Elastic-perfectly plastic contact

Figure 13 represents the force-displacement relationship between two cylindrical
particles which is used to simulate the intergranular behavior. The contact relationship is
activated when two disks overlap. The contact geometry between two disks is
characterized by a contact point, and a contact direction which passes through the centers
of the particles in contact. N and S denote the projections of the contact force that are
respectively tangential and normal to the contact direction. The value of the contact force

at time #+ At is calculated from its value at time ¢ by using the following relation

{N(t+At) =N(@)+k,An (1.26)

S(t +At) = S(t) + k,As

where k, and k; are the tangential normal and tangential stiffness, respectively, and An
and As are the normal and tangential components of the relative displacement of the
contact between time ¢ and ++ At. In the case of linear elastic contacts, k, and &; are
constant. In the case of Hertz contact, k, and k; vary with the contact load N and S. In
general k, and k; are assumed to be equal. More realistic expressions are reported in

Misra (1995).
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Table 2. Interparticle friction angle ¢, measured from laboratory tests (after Misra, 1995).

Material Type of test Conditions Value ¢, Reference
Biotite Along cleavage faces Dry 14.6-17.2 Hormm and Deere,
1962
Saturated 7.4 —
Calcite Block on block Dry 8 —
Water-saturated 34.2 —
Chlorite Along cleavage faces Dry 19.3-27.9 —
Saturated 12.4 —
Feldspar Block on block Dry 6.8 —
Water-saturated 37.6 —_
Direct shear box, free particles on flat surface 36 El-Sohby, 1969
Free particle 37 Lee, 1966
Particle-plane Saturated 28.9 Procter and
Barton, 1974
Feldspar Direct shear box, fixed Dry 6 Horne, 1965
(microline) particles on flat surface
Feldspar (microline) Water-saturated 37 —
Glass Free particles on plate Dry 10-12 Gray, 1960
Water-saturated 17 —
Three balls on glass plate Dry, Low load 9 —
Water-saturated and low load 19 —
After Redrying 16 —
Glass ballotini Ball on ball Dry, tow load 2 Skinner, 1969
Dry, high load 4 —
Flooded, low load 28-40 —
Flooded, high load 38-40 —
Dry, low load 3 —
Dry, high load 7 —
Direct shear box, free Water-saturated 17 Rowe, 1962
particles on flat surface
Dry, tested in dry nitrogen 9 Tong, 1970
Acetone cleaned, tested in dry 16 —
nitrogen
Trichloroethylene, acetone, detergent 21 —
rinses
Water-saturated 15 —
Cleaned with soap, water and acetone 15 —
Particles fixed with wax after initial sliding 14-15 —
Muscovite Along cleavage faces Dry 16.7-23.3 Hormn and Deere,
1962
Saturated 13 —
Phlogopite Along cleavage faces Dry 14-17.2 —
Saturated 8.5 —
Phosphor-bronze Ball on ball Water-saturated 21 Parikh, 1967
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Material Type of test Conditions Value ¢, Reference
Quartz Block on block Dependent on surface condition 0-45 Bromwell, 1966
Dry 74 Horn and Deere, 1962
Water-saturated 24.2 —_
Block over particle set in Dry 6 Tschebotarioff and
mortar Welch, 1948
Moist 24.25 —
Water-saturated 24.25 —
Direct shear box fixed Dry 6 —
particles on flat surface
Moist and water- saturated 25 —
Dry 11 Penman, 1953
Water-saturated 33 —
High load 19 —
Low load 29 —
Air dried 22 Bishop, 1954
Atmospheric 28 Brogliato, 1996
Water-saturated 23-30 [175]
High vacuum 38 Bromwell, 1966
Water-saturated 26 Tong, 1970
Moist and water-saturated 28 —
Dry, tested in dry nitrogen 15 —_
Particle-particle Saturated 26 Procter and Barton, 1974
Particle-plane Saturated 222 —
Dry 74 —
Particles on polished block Water-saturated 22-31 Rowe, 1962
Three fixed particles over Water-saturated 21-27 Hafiz, 1950
block :
Quartz (clean) Direct shear box, fixed Dry 6 Homn and Deere, 1962
particles on flat surface
Water-saturated 23 —
Amylaraine 31 —
Carbontetrachloride 11 —
Quartz (milky) Dry 9 —
Water-saturated 27 —_
Quartz (rose) Dry 7 —
Water-saturated 24 —
Steel Ball on ball Dry, polished and cleaned with 7 Gray, 1960
carbontetrachloride
Direct shear box, free Air 7 Rowe, 1962
particles on flat surface
Water-saturated 9 —
Free particles on plate Water-saturated, dry and cleaned with 8.8 Gray, 1960
carbontetrachloride
Light load apparatus Dry, polished 9 —
Dry, polished and cleaned with 9.5-12 —
carbontetrachloride
Rods on rods Dry, cleaned with carbontetrachloride 9-14 —_
Steel balls Friction apparatus Dry 16-32 Skinner, 1969
Zircon Direct shear box, free Water-saturated 23 El-Sohby, 1969

particles on flat surface
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The contact force of Fig. 13 obeys the Coulomb friction law:

- S@)<tang,N()+c (1.27)

where @), and c are the friction angle and cohesion between two disks, respectively.

Figure 13. Elastic perfectly-plastic model for contact without rotational stiffness and
friction.

Linear-elastic perfectly plastic contact with rolling stiffness and friction

In idealized granular materials, rolling friction is included at the particle contacts by
generalizing the elastic perfectly-plastic contact relation. Such a generalized model is
schematized in Fig. 14, including its normal, tangential, and rotational stiffnesses, and
rolling and sliding frictions. At the particle contacts, the increments of normal force,

shear force, and moment are:

AF, =k An, AF,=kAs, and AM = Rk,A0 (1.28)

where k,, k,, and kg are the normal, tangential, and rotational stiffness of grain contacts,
respectively. R is the average particle radius, An and As are the normal and tangential
relative contact displacement, and A6 is the relative rotation of disks, which is the
rotation of the contact surface. Eq. 28 holds provided that the normal and tangential

forces, and the moment at contact, obey the following generalized Coulomb friction law:
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b=-R,|A8, - B|sign {(A8, - B)(A6, - B)} (1.29)

where ¢, is the sliding friction angle, and f3 the rolling friction angle. The rotational
stiffness kg is based on an analytical expression derived from the two-dimensional theory
of elastic contact (Meftah et al., 1993). kg increases proportionally to the cylinder radius
and the normal load, which is in agreement with experimental results on hard rubber

cylinders (Bardet and Huang, 1993).
Governing equations of statics

The equilibrium of forces on particle a is:

Zfi“ + Zfi‘” =0 i=123 (1.30)
ek,

cel,
where feis the internal force at contact ¢, and f* the external force at point e. The
equilibrium of moments about center of particle a is:

Z(m;‘” +ey ri )+ Z (m,."" +eyr k"")= 0 i=123 (1.31)

cel, ek,

where m/“is the internal moment at contact point ¢; m;the external moment at point e;

ejjx the alternating tensor; rjf‘“ = x; - x;f , rlf’C = xj - x? ; x¢ and xj? the center coordinates

of particles a and b; and x; the position of contact point c.
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Figure 14. Representation of generalized contact with rotational stiffness and rolling
friction.

Boundary conditions

There are several types of boundary conditions, which can be specified on an assembly of
particles, including (1) prescribed displacement, velocity, acceleration, and force

boundary, (2) periodic boundary, (3) rigid boundary, and (4) flexible boundary.

Prescribed force/displacement

As in the boundary value problems of continuum mechanics, the boundary conditions in
granular mechanics can be either prescribed displacement/ velocity/ acceleration, or

prescribed force. External forces and moments can be applied to any point of particles.

The motion of a group of particles can conveniently be prescribed by a cluster. Clustered
particles are subsets of particles that move as a rigid body and are useful to represent
rigid objects. As shown in Fig. 15, the particles may overlap, and move as a solid object.

The motion of the a” particle in a cluster is defined by its translation x?and rotation A6,

as follows:

u® =U, +e, A8 (X, —x’) and A6, =A6 (1.32)

ijk

where U, is the translation vector and A@ is the rotation of a reference point for the

cluster.

- Page 36 -




Figure 15. Rigid cluster of particles.
Periodic boundaries

Periodic boundaries are illustrated in Fig. 16. The particles leaving segment AB are
reintroduced on segment CD. The periodic boundary conditions can be used in both
horizontal and vertical directions, therefore filling the complete space with particles.
Periodic boundary conditions have extensively been used for determining average
continuum quantities (e.g., stress and strain) free of the heterogeneities caused by rigid
boundaries. However, periodic boundaries introduce kinematic constraints in some
circumstances. These conditions are met when the deformation patterns have a length
scale that is a sub-period of the box. One of these adverse effects is observed for shear

bands as explained in Bardet and Proubet (1991).

Spatial period

<
<

Y

B D
Figure 16. Periodic boundaries.

Rigid walls

Rigid walls simulate the loading platens which transmit loads to laboratory samples.

They are usually made of a single segment, but can also be made of several connected
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segments for generating various polygonal shapes, such as superficial footings.

Displacement, force, or moment can be specified for rigid walls.

Flexible membranes

Flexible membranes were introduced in Bardet and Proubet (1991) to simulate the
flexible membranes used in the triaxial test. Forces and moments are externally applied to
the boundary particles by specifying the prescribed stress tensor. The forces distributed
on the boundary are calculated from the unit vectors normal to the boundary segments

and the prescribed stress tensors. For instance in Fig. 17, the force F © applied to the

particle center O is:
o _ BC c
F~ =BCo;n (OC +CB/2)]OA + CDO’,.jnjD + DEO',J.njDE (OD + DE/2)/OF (2.33)

where 0j; is the prescribed stress tensor and %, @, and ,2t are the unit vectors normal

to segments BC, CD and DE. The flexible membrane can sustain large deformation.
Particles are inserted into the flexible boundary chain as they attempt to force their way

between two particles of the flexible boundary.

Figure 17. Flexible membrane for stress-controlled boundaries.
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PART II. TRANSITION FROM DISCRETE TO CONTINUOUS MEDIA

Background

The definition of stress is one of the critical problems for understanding material
instability and the assumptions of higher-order continuum theories. The definition of
stress in granular media is a controversial topic in Mechanics. Some researchers (e.g.,
Bogdanova-Bontcheva and Lippmann, 1975; Chang and Ma, 1991; Kanatani, 1979; and
Miilhaus and Vardoulakis, 1987) claim that stress tensor is not symmetric in granular
media, and that couple stresses are important to understand material instability such as
shear banding. Others (e.g., Christoffersen et al, 1981; and Cundall and Strack, 1978)
affirm that the stress asymmetry is absent or negligible for all practical purposes, and

unnecessarily complicates the description of the mechanical behavior of granular media.

The controversy about the asymmetry of stress and existence of couple stress is not
specific to granular media. Couple stresses were proposed in metals and fracture
mechanics to regularize the stress intensity at crack tips (e.g., Sternberg, 1968), but there
is not yet a convincing experimental evidence for couple stress (e.g., Diepolder et al.,

1991).

Part II re-examines the definition of stress in granular materials, and establishes the
conditions under which there may be couple stresses and asymmetric stress. Following
the introduction, the second and third sections review the basic equations of granular and
equivalent continuous media. The third section re-examines the definition of stress from
virtual work and statics. Finally, the last section gives an example illustrating the stress

asymmetry in granular media.

Granular medium

Definition

As shown in Fig. 1, the volume V is filled with N particles, some of which are subjected
to external forces or moments applied from the exterior of volume V. The particles are

grouped in the set B= {1,...,N}. The forces and moment acting on the particles of B are
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concentrated at M points of set C={1,...,M}. As shown in Fig. 1, the subset / represents

the contact points between two particles of B, whereas the set £ denotes the points where

external actions are applied:

[={L..M,}, E={M, ..M}, and C=IUE={l,.,M} @.1)

The sets I,, E,, and C, denote the contact points on particle a corresponding to internal
actions, external actions, and all actions, respectively. The sets Ca I, E;, 1LE, and C are

related as follows:

c=\Jc,. C,=I1,VE, I=|JI,, and E=|JE, 22)

acB aeB aeB

The intersections of I, and E, for two different particles are either empty or reduced to a
single point c:
E,NE, =@ andI, NI, ={c} forV a#be B 2.3)

The particle assembly is in equilibrium when each particle is in equilibrium. The

equilibrium of internal and external forces acting on particle a is:

Y fe=0 i=123 2.4)

ceC,
where £ is the force at contact c. The equilibrium of moments about the center of
particle a is:

T (e + e, (x5 - x2) £)=0 i =1,2,3 @.5)

ceC,
where m™ represents the internal or external moments at contact point ¢; e;; is the

permutation symbol used for vector cross product; and x{ and x] are the coordinates of

particle center a and contact point c, respectively.
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Continuum

Granular medium

Figure 18. Representation of a granular medium and its equivalent continuum.
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Virtual work in granular media

As shown in Fig. 1, the kinematics of granular media is represented by the displacement

&u’ of the particle centers, and the particle rotation 66;. After multiplying Eqs. 4 and 5
by any virtual displacement & and rotation 86", and summing for all the particles of

volume V, one obtains the following relation:

S S (fbur + (me + e, (x5 —x0) £ )087 )= 0 (2.6)

aeBceC,

After transforming the double sum for C, and B of Eq. 6 into two separate sums for / and

E, and noting that contact forces and moments are opposite at internal contact (i.e.,

f€=f*=—f" and mf = m™ =—m!°), one obtains the principle of virtual work:

WP +6w; =0 Q.7

where the work 6%, done by external forces and moments and the work 5w} done by

internal forces and moments are:

oD = Y (fAdus +miad6;) and W2 ==Y (f8uf +m66;) 28)
cel

ecE

As shown in Fig. 2, Adu’ and AdB; are the relative displacement and rotation of the two

particles a and b at their contact point c, respectively:
A = Gu’ — 8uf +e,,(60° (x — x2 )~ 60°(x¢ — x¢)) and AG6! =567 - 367 (2.9)

&u! and 60, are the displacement and rotation of the points e of application of external

forces and moments. The variational displacements and rotations u;" and 66, can be

selected arbitrarily. In particular, they can be chosen as follows:

Ouf =a,+bx] +c,uxx; and 60] =a,+ B;xi i=123 (2.10)

where a;, b, cir, 04, and fj; are arbitrary coefficients. By using Eq. 10, Adu;, Ad6; and
du; become:
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867 =B, (2 = x2 1 0, (e —x0x2 )~ 0t ey (8 — x5 )+ B o (g —xt )= 2 (s - % 21D

A86¢ = B,(x2 - x°) 2.12)
Buf = 8" +,,00° (xf — x) = @, + b,x" + 0, xoexe® + e, (xf — xi )+ B3 (s - x0°)(2.13)

where x* corresponds to the center of particle a where contact e takes place. By using

Egs. 11 to 13, 6W,"and W, become:

WP = b,,-;ff(xf —x0)+ D¥5 (xoxt —xex ) a,gegkff(x,’: ) .
B, ey O = )= 7 o = x4 il (= x) @14)

cel

WP = —a Y £ b, 3 foxe —c, 3 frn o, Y e, i (xf = 30 +m)
E

S G <t 2.15
-B,2 (elerf;'e(x; -x; )+ m{ix,"e (2.15)
ecE

Because Eqs. 7, 14 and 15 hold for arbitrary values of a;, by, ¢, 0 and Sy, the following

relations are obtained:

Y f=0 i=123 (2.16)
oy’

Z](xf’ =) = lei”f,f ij=123 @2.17)
E;e,ﬁ(xj? X\ fi = —ZEM;” i=123 (2.18)
g}(ewff(x? (5 = x) — X7 (x —x0) b mif (58 = x))= Z;!M,"exj" ij=123 (2.19)
N o hxp - xixg) = frxa i, k=123 (2.20)
oy oy

where M is the external moment acting on particle a about the center of particle a:

M = e, (30 —x2) fi +mif 2.21)

Equation 16 translates the equilibrium of external forces applied to the whole assembly of
particles. By using Eqgs. 17 and 18, one can derive the equilibrium of external moments

about the coordinate origin for the assembly of particles, i.e.:
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3 (e S +mf)=0 2.22)

ecE

Therefore, Eq. 18 becomes:

e —xf ==Y M* =Y epinfy =123 2.23)

cel ecE ecE

For a volume ¥ to be in equilibrium, the sum of external moments about a common point

must vanish (i.e., Eq. 22). However, it is emphasized that the sum of external moments

about different particle centers (i.c., ZM ) is not necessarily equal to zero. M results
ecE

from not only contact moments ! but also contact forces £;°. It may be different from

zero even where there is no contact moment.

Continuum for granular media

In the continuum equivalent for granular media, the traction vector 7; and moment vector

m; acting on the unit surface of unit normal vector »; is related to the Cauchy stress tensor

oy and the couple stress tensor (; through:

T,=o0,n, and m=pu,n; i=123 (2.24)

! U

In the absence of external body force and moment per unit volume, the equations for

equilibrium of internal stress and couple stress are:
6,,=0 i=123 (2.25)

W, +eu0y=0 i=123 (2.26)

The kinematics of the equivalent continuum is defined by the fields of displacement

vector 8u; and rotation 86, which describe the motion of particle centers, i.e.:

Su,(x%)=8u, and 86,(x")=06; Vae B 2.27)

By multiplying Eqs. 25 and 26 by any variational fields du; and 66, and integrating over

the volume V, one obtains the following relation:
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JV (o'ﬂvf&u" + (K1, +€w0 )36, )=0 (2.28)
By invoking Gauss theorem, the principle of virtual work is obtained:

W, +8W, =0 (2.29)

where the virtual work 8% of external forces and moments and the virtual work 6W; of

internal stresses are:

oW, = [ (0,(Bu, ; +¢,,80, 7+ 1,86, Wy and 8W, =—[ (T;5u,+m30, S (2:30)

Ji
By choosing &u; and 86; as specified in Eq. 10, Eq. 30 becomes:
W, =—a,[ TdS-b, [[Txds—cy [[TxxdS~e, [,mds—-B, [, mx,ds 2.31)
W, =b, [ 6,V +c, [ (0% +0,x))V ~0tey [onav+8,] (u, +ewx 04 AV (2.32)

Because Egs. 29, 31 and 32 hold for any values of a;, by, cyik, 0% and B, the following

relations are obtained:

jszjds =0 i=123 (2.33)
[o,av =[xTds ij=123 (2.34)
e jVa adV =~ jsm,.ds i=123 (2.35)
[, +euxon Wy = [xmds ij=123 (2.36)
jV (0 % +0x,)dV = jsz;x %, dS 0j=123 (2.37)

Equation 33 implies the equilibrium of external forces. Equation 34 represents the

average stress G; in volume V-

_ _1 1
5,=5],0,4V=1 | +Tds (2.38)

Equation 35 is useful to examine the symmetry of G;:
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_ 1 .
Ty =7 [imds i=123 (2.39)

€0y = 0 when the stress tensor is symmetric (i.e., G, =G ; ). However, L mdsS is not

necessarily equal to zero when there are moments at the external boundary. As previously
mentioned, these external moments in granular media may result from contact forces

without contact moments. Finally, Eq. 36 becomes:

1 _ —
VIV i T€uXiOy }”/ =M, +euly (2.40)

where _Z—y is the average moment of stress:

<= 1
=7 | %0V (2.41)
In summary, the internal work becomes:

oW, =V (b5, + Co (B + T i) — 04T i + By (L + e )) (2.42)

i ji
Definition of average stresses in granular media

The average stresses in the equivalent continuum are defined by postulating that the

granular and continuous media produce identical internal and external works:

WP =56W, and SW; =W, (2.43)

Average stress

Because Eq. 43 applies to arbitrary values of by;, the average stress is:

o—'ij =

Y ) -x)ff= %fo” f5 (2.44)

1
V cel eeE

Equation 44 is identical to those derived by Weber (1966), Goddard (1977),
Christoffersen et al. (1981), and Rosenberg and Selvadurai (1981). In the case of

spherical and cylindrical particles a and b, which are in contact at point ¢ with unit

- Page 48 -




normal vector nf (i.e., x’ —x" = (R, + R,)nf ), due to the opposite sign of contact
forces and contact normals (i.e., £ =—£" and n™ =-n"), Eq. 44 becomes:

,_—Z(R + R ff = ZZ n f;° (2.45)

aeBcel

Symmetry of average stress

Because Eq. 43 applies to arbitrary values of ¢, one obtains:
~ 1 a c ae e .
€40 =5 2, 0u(x; =) ——ZM = Ze,,kx" feoi=123  (246)
cel eeE eeE

Equation 46, which can also be obtained directly from Eq. 44, is useful to determine the

amplitude of stress asymmetry. This amplitude can also be characterized by G, -G ; as
follows:
5 1 ae
8, =3 )= e ) M @247)
V ecE eeE

Equation 47 implies that the average stress may be asymmetric, even when there is no

moment at contacts (i.e., m’ = 0). The asymmetry results from the sum of the external

moments that are created by external forces f;° about the particle centers.

The amplitude of stress asymmetry increases with the area S on which the external
moments are applied, but decreases with the volume size V. If the external moments are
assumed to have bounded values, the amplitude of stress asymmetry decreases with V/S.
When V — oo, the effects of external moments vanish, and the average stress is

symmetric. This applies with or without contact moments.

In the case of spherical and cylindrical particles, Eq. 47 becomes:

“__ ’ =—22R ( ac pac _ ‘c ) Z(R +R )( ac'fac jCﬁac) (248)

aeB cel, cel
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Equation 48 shows that G, is not necessarily symmetric when the particles are spheres or

cylinders of identical radius. This result, which is in disagreement with Caillerie (1991)

and Chang and Liao (1990), will later be verified in a particular example.
Average micropolar stress and first moment of stress

Because Eq. 43 applies to arbitrary values of f8; and ¢, the following relations are

obtained:

-— 5 1 c c as..c a c a 1 ae ae
Hy +eyZ ='I7'Z(eik[f} (xj"(xk _xllc,)——xj(xk "xk))"' m; (xj? _xj))zl—/-ZMi X;

cel eeE

ij=123 (2.49)

5 Sl l c a_a 1 ae_ae_qae + o
T+ T =72 f (xfx,f—xjxk)=—V—z frexsexy i, k=123 (2.50)

cel eeE

Therefore the external moments A*, which result from external contact force f;° and/or
H !

contact moment m’, generate not only asymmetric stress but also couple stress and first

stress moment. This result is in agreement with Eq. 26, which states that couple stresses
are required to balance asymmetric stresses. However, the present approach provides

only the sums fI; + 7)) o and f,q-,- +Z i » and unfortunately not each term [T, and X k-

Alternate definition of average stress

The average stress can also be defined based on statics, instead of virtual work (e.g.,

Cundall and Strack, 1978). The average stress within volume V is defined as the

weighted average of the stress & for each particle a of B:
v I
G, =5 20,7, 251)
14 aeB
where V, is the volume of particle a, and:

o 1
; = _[VHO',jdV (2.52)
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By using Eq. 34, and replacing the traction vector T; with discrete contact force f°, o

becomes:

—a ] 1 c prc
o = 7 La xT,dS = - 3 xS (2.53)

a L‘EC,,
Because the contact forces are opposite at internal contacts (i. €., f;* =— ff” ), the
average stress G, is:

5 =LY S = TR U IS = IR @Y

aeBceC, cel ecE eeE

Note that x{ in Eq. 54 refers to contact point e, whereas x* in Eq. 44 refers to the center

of the particle a where contact e takes place. 6,; and G, are related through:

o, =0, + % Y (xe—x)fe (2.55)
ecE ‘

The symmetry of &, results from the equilibrium of moments about the coordinate

origins for particle a , i.e.:

1 . ,
€0 =72e,»,kx,~fk =0 i=123 (2.56)

a ceC,

The stress 5,; is therefore symmetric because it is the weighted sum of symmetric ;.

The symmetry of 6,.; can also be shown by using Eq. 54 and invoking the equilibrium of

external moments about the coordinate origin (i.e., Eq. 22).

The symmetry of E,; has significant implications in computational granular mechanics,

especially for the computer simulations using dynamic relaxation to solve the equilibrium

equations of statics (e.g., Cundall and Strack, 1978; Bardet and Proubet, 1991). When

there is no moment at contacts, E,;. should be symmetric, and any computed asymmetry

of E,; should be interpreted as inaccurate calculation and/or lack of static equilibrium.
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In the case of spherical and cylindrical particles of radius R,, x{ =x" + R,n; , the average

stress 6,;. becomes:

Zi N (x +R A ff = lz& Yt =;1/-2Ra yoniff 2.57)

5ol
i =
v acB Va ceC, v aeB I/:z ceC, aeB  ceC,

Equation 57 is the same as that obtained by Cundall and Strack (1979).

Examples

We will illustrate the circumstances of stress asymmetry in the case of double and

multiple layer interfaces filled with cylindrical or spherical particles.
Example 1: Double layer interface

The stresses G, and G, ,; can be calculated analytically for the particular example of Fig.

3, which represents an interface made of p columns each having two particles. The
columns have the same height but are made of particles of various diameters. The particle
assembly is subjected to the normal force N, and shear force Sp, which are assumed to be
distributed evenly onto each particle column; the normal and shear forces acting at all
contacts are N = N,/p and S = S,/p, respectively. The contact direction between two
particles is identical for all particles in contact. It is characterized by the unit vector n of
component n; = sinf and »n; = cos6. The equilibrium of forces and moments for all

particles and the top plate are satisfied when:

S=Nn/(+n,)=Ntan(6/2) (2.58)

All the contact forces have the same inclination /2 relative to the contact direction n.
The contacts do not slip and the interface remains stable as long as 6 remains smaller

than 2¢, where ¢ is the friction angle between two particles. For the calculation of G, it

is convenient to select the coordinate axis at the center of particle 2. In this coordinate

system, the center coordinates of particle 1 are:
x*=nl and x’=nlL 2.59)
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where L = R, + R;. By using Eqgs. 44 and 59, the stresses G; are:

G, =-mS/4, T, ="(_1in_2)"12‘S/A’
n (2.60)
G,=~(1+n,)S/4, and &, =-n,S/A4

where A = V/L, and V is the average volume of particle columns. For interfaces filled

with cylindrical or spherical particles, ¥ can be evaluated as follows:

V =(+n)LWW, (2.61)

where W, is the average width of particle columns in the x;-direction. For cylindrical
particles, W is the particle length. For spherical particles, I, is the average width of
particle columns in the x;-direction. Both #; and W depend on the density of particles in

the interface.

The external moments M/ acting on particles 1 and 2 are:

M}=RS and M;=R,S (2.62)
By using Eq. 47 or 60, the amplitude of stress asymmetry is:

- M, +M;

The stress asymmetry vanishes when S = 0, i.e., when the particle columns are vertical.

As previously stated in Eq. 48, G, is not necessarily symmetric for particles of identical
radius (e.g., R; = R»). The couple stress and first stress moment is:
Fis+ X~ 2y, =Rn S/4  and [y +30 — Ty, = R, S/4 (2.64)

For the calculation of E)",; , it is convenient to select the coordinate axis at the lowest

external contact. The coordinates of the highest contact are therefore:

x=nl and x;=(1+n)L (2.65)
and the stress &, is:
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G, =-nS/4, &, = —MS/A, and G,, =0y, = —(1+n,)S/4 (2.66)
n

1

As expected, &, is symmetric. G;and &, are related through:

* — * — (1+n2)
0,,=0), 05p=0p~—

S/4, G,,=8y, and 5, =0, —S/A4 (2.67)

1

Figure 4 compares the normalized variation of (')"; and G; when the angle 6 = tan™ (n,/n))

varies from 0 to 90°. The stress asymmetry (i.e., &,, — 05, ) remains constant and

independent from 6.
Example 2: Multi-layer interface

As shown in Fig. 5, the multi-layer interface model is made of p columns of particles,
each column i having g; particles (g; must be an even number). This multi-layer model is
a generalization of the two-layer model, which corresponds to g; =2 fori=1,...,p. The
particle columns have the same height and contact direction n, but may have different
numbers g; of particles. All the particles and the top platen are in static equilibrium when
Eq. 58 is satisfied; the contact forces are identical to those of the two-layer model. The
average stresses in the interface can be determined by averaging the average stresses in

each column. Hereafter, we will calculate only the average stresses in a column.

After selecting the coordinate axis at the center of particle g;, the center coordinates of

particle 1 are:

x =nL and x,=(+n)L-(R+R,) (2.68)

qi
where L= ZR . The average stresses 0 in column i are:
j=1

2
&, =-nS/4, Oy ="(‘1i";12—)S/A+

i & (2.69)
_ _ R +R,
G, =—(1+m)S/4, and &y =—(1+n,)S/4+ ——V——'S

R1+Rq'_ ]+n2S
V b
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where 4 and V are defined as for the double layer interface. The values of &;; and &),
are identical to those in Eqgs. 60, whereas the corresponding values of &,, and G, are
different. The differences however vanish when ¥ — oo, The stresses o—‘,;. in the multi-

layer are identical to those of the double layer interface (i.e., Eq. 66). As predicted by Eq.

69, &, converges toward (')'",;. when volume ¥ becomes large (i.e., ¢ — o). The external

moments M acting on particle 1 and g; are:

M;=RS and M =R S (2.70)

These external moments are responsible for the stress asymmetry as follows:

G, —Ty =-S(R +R,)[V @.71)

The amplitude of stress asymmetry decreases with the number of particles in the
columns, and increases with the size of particles at the top and bottom of columns. The
stress becomes symmetric when the column height becomes infinite (i.e., g — ). The

couple stress and first stress moment are:

Hy; +§121 _212 =R S/A

_ _ 2.72
I, + Sy~ Sy = R(1+1,)S/ A~ R(R,+ R, )S/V @72)

In contrast to the asymmetric stress components, [ + ) i« does not decrease when the

volume V becomes large (i.e., g — ).
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H=R+...+Ry (1))
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Figure 21. Multi-layer interface model for calculation of average stress.
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Discussion

The asymmetry of stress depends on the way stresses are defined. Stresses defined by
statics are symmetric when there is no contact moment. However stresses defined by
virtual work may become asymmetric when there is no contact moment. Our analysis
differs from previous ones (e.g., Christoffersen et al., 1981; and Chang and Liao, 1990)
because we considered external moments, and established the circumstances and
amplitude of stress asymmetry. In agreement with Caillerie (1991), we found that the
asymmetry originates from external moments, and that the amplitude of stress asymmetry
decreases with the size of the granular volume. The stress asymmetry is therefore more
detectable in elongated samples subjected to external moments on their boundary. Bulky
samples subjected to small external moments are likely to display negligible stress
asymmetry. The stress asymmetry can rightfully be neglected in large masses of granular
media far away from boundaries with external moments. However, it may become
impbrtant in interfaces with significant external moments. There is a need for verifying

these findings through computer simulations and laboratory experiments.

Conclusion

We have derived the conditions for the asymmetry of stress in granular materials, and
shown that there is asymmetry even when the particle contacts do not transmit moments.
This stress asymmetry is obtained when the stress is defined from virtual work, but is lost
when the stress is defined from statics. The asymmetry results from external moments
applied by external forces. We also show that the amplitude of stress asymmetry
decreases with the ratio /S between surface S and volume V. When V/S becomes very

large, the stress asymmetry disappears, with or without external contact moments.
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PART III. EXPERIMENTAL INVESTIGATION

Parts I and II of this report covered some of the computational and theoretical approaches
for investigating material instability in granular materials. Part Il devises an
experimental approach to provide these computational and theoretical approaches with
relevant and detailed experimental data sets. Specimens of idealized granular media were
constructed and tested in the laboratory, and the displacement and rotation of particles
were measured using stereophotogrammetry. The laboratory tests were conducted at the
University of Southern California; the stereophotogrammetric measurements were carried

out at the Joseph Fourier University, in Grenoble, France.

Stereophotogrammetry was found to be the best suited techniques for measuring
accurately the displacements and rotations of a large number of nearly identical particles.
At the time of this investigation, this optical technique revealed to be more accurate and
practical than computer vision methods based on existing digital cameras. The accurate
experimental results generated in this study are useful to assess the applicability of
higher-order continua to granular behavior, and are therefore instrumental to understand

material instabilities within granular media.

The first section of Part III reviews the background that motivated our experimental
investigation. The second section describes the experimental set-up and the
stereophotogrammetric measurements. The third and last section describes experimental

data processing and presents processed results.

Background

Deformations within granular soils are commonly concentrated in narrow zones called
shear bands, the thickness of which are 8-10 times the mean grain diameter (Roscoe
1970; Muhlhaus and Vardoulakis 1987). The relation between shear band width and
grain size has profound implications in laboratory and centrifuge testing of reduced-scale
models. It implies that grain sizes must also be scaled down in laboratory and centrifuge

models for simulating the progressive failure of in-situ granular masses.
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Hill (1962), Mandel (1963), Rudnicki and Rice (1976) successfully analyzed the
emergence and inclination of shear bands, but, since their constitutive theories included
no internal length scale, they did not address the problem of shear-band thickness.
Aifantis (1984, 1987) and Zbib and Aifantis (1989) introduced an internal length scale by
including second- and fourth-order strain gradients into the yield condition of plasticity.
The higher-order strain gradients allowed them to account for the thickness, spacing, and
velocity of shear bands in metals. Vardoulakis and Aifantis (1989) applied a similar

approach to soils by adding second-order strain gradients to the flow rule of plasticity.

As an alternative to higher-order strain gradient theories, Muhlhaus (1986), Muhlhaus
and Vardoulakis (1987), and Vardoulakis (1989) introduced an internal length scale by
using the micropolar (Cosserat) theory. Although based on different physical
assumptions, both micropolar and strain gradient approaches successfully detect the
emergence of shear bands and calculate their inclination and thickness. Zbib and Aifantis
(1989) also analyzed the evolution of the deformation within the shear bands of metals.

They could not apply it to soils due to lack of relevant experiments on soils.

The structure of shear bands in real granular materials is difficult to investigate by using
laboratory experiments. The radiographic techniques with lead shots (Roscoe, 1963)
estimate the shear band thickness but are not accurate enough to measure the localized
field of displacement. The stereophotogrammetric technique of Desrues (1984) measures
the displacement but not the rotation of particles. The numerical simulation techniques of
Bardet and Proubet (1989, 1991, 1992), and Bardet (1994) provided extensive
information on the displacement and rotation of particles but are only numerical

substitutes to actual laboratory experiments.

Herein, we present an experimental approach that generates experimental data sets on
cylindrical rods and is useful to investigate the application of higher-order continuum
theories to granular media. Cylindrical rods, in place of real granular material, are tested
under confined axial compression, in an attempt to emulate plane-strain compression tests
on real soils. Stereophotogrammetry (Desrues, 1984) are used to determine the

displacement and rotation of particles. Stereophotogrammetry was preferred over other
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techniques for measuring the displacement of particles. It visualizes displacement fields
as a false relief, and automatically tracks particles between two successive photographs.
This is a great benefit in the case of large assemblies of nearly identical particles.
Stereophotogrammetry automatically digitizes and recognizes individual particles

between successive photographs.

Axial compression of idealized granular media

Sample composition and fabrication

As listed in Tables 1 and 2 and shown in Fig. 23, two tests, hereafter referred to as A and
B, were carried out; the specimens of tests A and B were made of a total of 1848
cylindrical acrylic rods having for nominal diameter 4, 6 and 8 mm. Specimens A and B
had a slightly different slenderness ratio. All rods are made of transparent acrylic material
with an average density of 1.3 g/em’. The rods were carefully cut to the same length of
10 cm; their faces were perpendicular and transparent as much as possible. Front faces
were half painted black in order to track simultaneously rotations and displacements.
After a careful inspection, the acrylic rods were found to be slightly imperfect cylinders.
Their diameters, as measured with a caliper, slightly vary in the radial and longitudinal
directions. Table 3 summarizes average diameter and diameter variation A¢ for a small
sample of arbitrarily selected rods. The average diameter is 8.12, 6.19 and 4.22 mm, in
comparison to the nominal values of 8 mm, 6 mm and 4 mm. Measured diameters vary
typically less than 1%. The black paint was also found not to divide exactly particles in

half, and could not be used to determine particle diameters.

Table 1. Particle size distribution for samples A and B of idealized granular material.

Nominal Measured
Diameter Average
Diameter Number of Particles
(mm) (mm) Complete Stereo Sample Stereo Sample
Specimen A B

4.0 422 1040 458 419

6.0 6.19 532 243 248

8.0 8.12 266 129 120
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Table 2. Result summary of tests A and B

Slenderness  Initial Young’s Ultimate  Friction Strain at Number

TEST ratio Modulus Strength angle at peak of
peak failure  failure particles
H/L E (MPa) Omax Omax (deg) Eomax  digitized
(kPa) (%)
A 2.43 304 84 18.4 3.10 830
B 2.81 574 88 18.3 3.24 787

Table 3. Variation of rod diameters on random samples.

Diameter ¢(mm)

Trial No. 1 2 3 4 5 Average Min  Max A¢ (mm) Ad/p(%) Average

8 mm rod 1 826 818 822 819 823 822 8.18 8.26 0.08 0.97 8.12
2 8.07 8.11 8.15 8.09 805 809 8.05 8.15 0.10 1.24
3 8.04 8.05 8.08 8.07 802 805 8.02 8.08 0.06 0.75

6 mm rod 1 6.11 6.08 6.08 6.12 6.07 6.09 6.07 6.12 0.05 0.82 6.19
2 6.31 6.26 6.27 6.30 626 6.28 6.26 6.31 0.05 0.80
3 6.20 6.21 6.15 6.20 6.19 6.19 6.15 6.21 0.06 0.97

4 mm rod 1 425 425 422 4.21 424 423 4.21 4.25 0.04 0.94 4.22
2 424 423 422 426 425 424 422 4,26 0.04 0.94
3 419 417 422 419 4.2 4,20 4.17 4.22 0.05 1.19

AverageAd/d (%) = 0.96
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Experimental setup for axial compression

Figures 24 shows the experimental set up. The test specimen of Fig. 23 is enclosed in a
0.15 mm thick transparent latex membrane and has circular loading platens at its top and
bottom. The membrane is clamped to both platens with compression rings. During the
sample fabrication, the membrane is stretched on a rectangular mold, and the rods are
manually positioned inside the mold with their axis parallel to one another. Specimens A
and B have therefore a different packing, in addition to a different slenderness ratio.
Vacuum is applied inside the membrane, which is equivalent to applying an external
constant confining pressure to specimens. The equivalent confining pressure was equal to
94.8 kPa. The axial compression is applied by raising the bottom platen at the constant

rate of 5.6 mm/min.

As shown in Fig. 24, a light box behind the sample reflects and diffuses the light of a 120
watts bulb through a polished glass. A Nikon FE2 35 mm camera is positioned
approximately one meter in front of the specimen. It is equipped with a macrolens to
limit optical distortion. The film was a hard contrast, black and white ortho film, 25 ASA,

with a fine grain. The camera aperture speed was set to one second.
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Figure 24. Experimental setup for axial compression of idealized granular materials.

Results

Specimens A and B were tested similarly by increasing the axial force while keeping the
confining pressure (i.e., internal vacuum) constant. The stress-strain curves obtained

during tests A and B are shown in Fig. 25. The axial strain € is

g=Ah/h, G.1)

where Ah is the vertical displacement of the lower platen, and 4, is the initial sample

height. The axial stress o is

c=FIA (3.2)

where F is the measured axial load, and 4 , is initial cross-sectional area. Figure 25
shows the stress-train response until 6% axial strain. Both samples failed at
approximately at 3% strain. Table 2 summarizes the calculated results for initial Young
modulus, peak and residual friction angles, and strain at peak failure for tests A and B.

The symbols in Fig. 25 indicate the axial strains at which the photographs were taken.
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Eight photographs were digitized in tests A and B. Four photographs were taken at points
Al to A4 during test A, and at points B1 to B4 during test B.

80 - A3
60

40 -

Stress (kPa)

Al
20

80 A
B3
B2 B4

60

40

Stress (kPa)

Bl

20
(®)

(=1
N
.h 4
=}

Strain (%)
Figure 25. Axial stress-strain response of samples A and B, and location of photographs.

Stereophotogrammetry Measurement

The eight photographs taken during tests A and B were processed by
stereophotogrammetry, an optical technique especially suited for tracking the motion ofa

large number of nearly identical particles.
Principle of stereophotogrammetry for measurement of displacement

The principles of stereophotogrammetric measurement of displacement fields are

described in Desrues (1984). The stereophotogrammetry equipment is called stereograph.
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The absolute error on measured displacement varies with quality of negatives and
operator experiences. In optimum conditions, the stereograph can measure 1 pm at the
negative scale, i.., as small as the grains coating negatives. In our experiment, the
absolute error is assumed to be in the order of 10 um as we used 35 mm negatives,

instead of larger negatives.
Application of stereophotogrammetry to kinematics of particles

The 35 mm negatives taken during tests A and B were enlarged to obtain 12.7 x 17.8 cm
(5 x 7 inch) negatives, the stereograph using only transparent media. The negatives
corresponding to two successive photographs (i.e., Al and A2) were placed on the
stereograph platens. At first, three fixed reference points (F1, F2 and F3 in Fig. 26) were
selected close but outside the sample. These three points, which correspond to fixed
objects in the laboratory, are references for defining a common coordinate system to all
photographs. In principle, the stereograph should indicate that fixed points do not move
(i.e., move only within the order of machine accuracy). For experimental reliability, these
points are digitized twice. Second, the stereograph software asks to define the area under

investigation by selecting four points (see Fig. 26).

Positioning particles requires that three points be digitized for yielding center position
and radius of individual particle. Three points are needed because the black paint does
not exactly delineate particle diameters. As shown in Fig. 27, points A and B are obvious
candidates as they are easily identified. However, point C is a less obvious choice. As
explained in a later section on error minimization, point C is chosen as the point farthest

away from points 4 and B.
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ABSTRACT

The research aims at investigating the physical origins of shear band instability in
particulate media, and the applicability of higher-order continuum theories for describing
material instability in granular media. The particular research objectives are (1) to review
the computational tools used for simulating shear bands in idealized granular media, (2)
to explore a critical micro-macro transition relevant to material instability (i.e., stress
symmetry), and (3) to devise laboratory experiments for generating some experimental
data sets useful for numerical and theoretical investigations of material instability in
granular media. Our methodology combines computational granular mechanics, higher-

order continuum mechanics, and laboratory experiments.

Our comprehensive review of past work on computational granular mechanics reveals the
diversity of numerical codes in granular mechanics, and the large number of assumptions

entering these codes.

Our theoretical investigation shows that the average stress in granular media, as defined
from virtual work, may be asymmetric in the absence of contact moments. We specify the
circumstances and amplitude of stress asymmetry, and calculate the corresponding couple
stress and first stress moment. We also show that the average stress is always symmetric
when it is alternately defined by using statics and no contact moment. The stress
asymmetry, which results from external moments, decreases with the volume size. The
asymmetric stress, couple stress and first stress moment are analytically calculated in

particular examples relevant to shear band instability.

Our experimental methodology is based on the application of stereophotogrammetry to
the kinematics of assembly of cylindrical rods, simulating granular media. We are able to
measure accurately the kinematics of a large number of nearly identical particles in the
laboratory. Our experimental methodology has generated new experimental data sets on
granular media useful to re-examine the applicability of higher-order continua to granular

media, and are therefore instrumental to understand material instability in granular media.
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(a) (b)

Figure 27. Calculation of center position and radius of particle using three different
methods: (a) Method A, (b) Method B, and (c) Method C.

Determination of Assembly Geometry

The stereograph measures the displacement of points A, B and C for individual particles
between two successive photographs. As shown in Fig. 27, points A and B are about
diametrically opposite, and at the boundary of the painted area. Points A and B are used
to track particles between successive photographs. Point C is used to define the center
and radius of particles, assuming that particles are perfectly rigid and circular. The
stereograph cannot track point C because there is not special mark on particles associated

with point C.
Assumption of rigid particles

The assumption of rigid particles was tested by measuring the variation AAB of distance
AB between the successive steps A1-A2, A2-A3 and A3-A4. In theory, AAB should be
equal to zero if particles were purely rigid and measurements perfectly accurate. As

shown in Fig. 28, the distribution of AAB indicates that AB varies less than 1 % between
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two successive steps.

Kk
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Figure 28. Variation of distance AB at different axial compression of sample A.

Particle center and radius

As shown in Fig. 27, three different methods, labeled A, B and C, were used to calculate
the particle center and radius from the raw data measured by the stereograph. The

corresponding calculation steps are detailed in the FORTRAN programs GET_AB in
APPENDIX.

Method A

Method A calculates the center position and radius of particles, assuming that points A, B
and C are on a circle. As shown in Fig. 274, the circle center O is the intersection of lines
PQ and RS passing through the center of segments AB and AC and perpendicular to AB
and AC, respectively. Point O, which is the intersection of lines PQ and RS, has the

following coordinates (Xo,yo):

j(xA —xp)% + 04 —ys o =(xf, ~xp )’2 +(Y,24 ~ s )I2
l(xA —xc Yo+ (4 =yc Yo =(xi —-xé)’2+(yi -¥e )IZ
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where (xa,ya), (X8, ¥8) and (xc,yc) are the coordinates of points A, B, and C,
respectively. Coordinates (Xo,yo) are always uniquely defined provided that points A, B
and C are not aligned. The particle radius R is the distance O4, which is the same as OB
and OC.

Methods B and C

As shown in Fig. 27b, Method B assumes that distance OD between segment 4B and
point O remains constant for a given particle. Method B uses points A and B; it only uses

point C at the first step to calculate the initial value of OD.

As shown in Fig. 27¢c, Method C assumes that angle OAB remains constant for a given
particle. Like Method B, Method C uses only point C at the first step to calculate the
initial value of angle OAB. Like methods A and B, method C does not fix the distance
AB. Methods A, B and C were found to give identical results.

Results on particle diameter

In theory, the measured diameters of rigid particles should remain constant between
successive photographs. In practice, the particle diameters, as calculated by methods A, B
and C, were found to vary slightly between steps. Figures 29 and 30 show the cumulative
distributions of rod diameter, which were calculated from the stereograph at the four
stages A1 to A4, and B1 to B4. As shown for sample A in Figs. 29 and 30, the four
curves labeled A1 to A4, and B1 to B4, are in good agreement, which establishes that

Method A, B and C gives very similar rod diameter between successive photographs.

The staircase line in Figs. 29 and 30, which is labeled “total”, represents the cumulative
distributions of rod diameter, assuming only three different diameters. The smooth
measured distributions indicate that particle diameters vary according to a tri-modal
statistical distribution centered about the average values of Table 3. Figures 29 and 30
also show that samples A and B and the complete specimen have slightly different
distribution of particles. Not all particles of specimens A and B were digitized. Particles
close to the loading caps and close to the lateral boundaries were excluded. As indicated

in Table 1, 830 particles were digitized in Specimen A, and 787 particles in Specimen B.
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As shown in Table 1, the corresponding number of particles with different diameter in

Samples A and B were calculated from Figs. 29 and 30.

100% o
80% - /
A1
....... A2
5 60% - A3
£ — — —M
‘§‘ : Total
$  40% [
20% -
0% L) L) 1] I“ T T L] Ll L 11 T L] T L] 1] T L] 1 T

Rod Diameter (mm)

Figure 29. Cumulative rod diameter distribution curves for sample A based (1) on
stereo measurement at axial compression stages Al, A2, A3, and A4, and (2)
on the complete specimen composition in Table 1.
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Figure 30. Cumulative rod diameter distribution curves for sample B based (1) on
stereo measurement at axial compression stages B1, B2, B3, and B4, and (2)
on the complete specimen composition in Table 1.

Figure 31 shows that there is little difference between the cumulative distribution curves
for the complete specimen and Samples A and B. Figure 32 shows the variation of
particle diameters which is calculated between the axial compression stages A2, A3 and
Ad relatively to stage Al. Figure 31 implies that measured particle diameters vary with

axial strain. These small variations result from a combination of experimental errors and

assumptions on particle rigidity and shape.
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Figure 31. Cumulative rod diameter distribution curves for the complete specimen and
Samples A and B.
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Figure 32. Variation of particle diameter as measured by stereograph at axial
compression stages A2, A3, and A4 relatively to stage Al.
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Error on center position and radius

Figure 33 shows the graphical determination of errors associated with the determination
of particle center O. This graphical construction is more convenient than algebraic
derivations of error based on Eq. 3.3. The possible positions of point O is encompassed
by the shaded area, which is generated when points A, B and C move independently
within the experimental error Ax (i.e., when points A, B and C describe the circles of
radius Ax centered about points A, B and C). This graphical construction proves that the
error depends of the relative position of points A, B and C. When points A and B are
approximately diametrically opposite, the smallest error is obtained when C is the
furthest away of points A and B (see Fig. 33a). When point C gets close to point A or B,
the shaded area becomes elongated, and the error increases significantly in the direction
perpendicular to AB (see Fig. 33b). In summary, an accurate determination of particle
center and radius requires to take point C as far as possible from points A and B. In the
present investigation, the optimum condition was selected; the error associated with the

position of point O is comparable to those of points A and B.
Ax% C
b\ |

B
=

Figure 33. Definition of error for particle center: (a) Point C far away from points A and
B, and (b) Point C close to points A or B.
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Particle angular position

As sketched in Fig. 34a, when the particle remains rigid, the particle rotation about its

center is identical to the rotation of segment AB. Thus, the angular position 6 of the

particle is:
6= tan™ (14—'1&) 3.4)
X4 —Xp

The particle and their angular positions for tests A and B are plotted in Figs. 35 and 36.
Figure 26 shows a close-up view of sample A.
Error on particle angular position

As shown in Fig. 34b, the error on particle rotation A6 can be calculated from the error

Ax of the position of point A and B.

AO=2sin"' (2Ax/AB)~ 4Ax/ AB (3.5)

where is it assumed that Ax << AB. The error Af is twice as large for the smallest

particles (4 mm) that for the largest particles (8 mm).

(a) (b)

Figure 34. Definition of particle rotation: (a) value of rotation increment and (b) error on
determination.
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Figure 35. Geometry of sample A at four different stages of axial compression A1-A4.
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Figure 36. Geometry of sample B at four different stages of axial compression B1-B4.
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Interpretation of Results

Once the center, radius and rotation of particles has been determined, various results on
the kinematics of granular materials can be investigated in a similar way to previous
numerical investigations, but this time based on real experimental measurements instead

of numerical simulations.
Stereophotogrammetric visualization

Figure 37 shows a three-dimensional representation of the false relief visualized in the
stereograph for assemblies of discrete particles. The rotation of particles are perceived as
if the particles where slanted instead of being cut perpendicularly. The abrupt jumps in
displacement are perceived as a cliff. Cluster of particles undergoing uniform translation

are shown as a flat plateau, while rigid clusters under rotation are represented as inclined

plateau.

Figure 37. Displacement and rotation of particles visualized by stereophotogrammetry.
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Particle displacement

As shown in Figs. 38 and 39, the displacement vectors of particle centers in tests A and B
were plotted in two different ways. They were plotted (1) at the particles centers, which
are irregularly spaced, and (2) on a regularly spaced grid by interpolating the
displacements vectors at the particle centers. The uniform grid displays more clearly
strain localization (i.e., shear band). As shown in Fig. 38 for test A, a shear band is
formed at stages A2-A3 and A3-A4; it is inclined at about 46 ° with respect to the
horizontal. As shown in Fig. 39 for test B, a shear band is displayed at stages B2-B3 and

B3-B4; it is inclined at 42 ° with respect to the horizontal. Both inclinations are smaller

that those predicted by the Mohr-Coulomb theory, i.e., 8 =7 /4+¢/2 when ¢=18° for
test A and ¢=17° for test B.

Shear strain

Figures 40 and 41 display the shear strain next to the incremental displacement vectors at
the particle centers. Shear strains were computed using local displacement gradient
centered at particle centers, as described in Bardet and Proubet (1991). They are
represented by square symbols centered on the particles; their sizes are proportional to
shear strain amplitude. As shown in Figs. 40 and 41, shear strains are concentrated in

narrow band that coincide with the shear bands of Figs. 38 and 39.

Particle rotation

Figures 42 and 43 display the particle rotation next to incremental displacement vectors.
Rotation angles are represented by a pie slice centered at the particle center. The particles
rotations are clearly concentrated in the shear bands as the shear strain. It is clear that
particle rotation concentrate inside shear band. This result agrees with those of
numerical simulation performed by Bardet (1994). Particle rotations have a determinant

influence on the localized failure mechanisms of idealized granular media.
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A1-A4 of Sample A

particle centers (bottom row) between four successive stages of axial
compression

Figure 38. Interpolated displacements on uniform grid (top row) and displacements at
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B1-B4 of Sample B.

particle centers (bottom row) between four successive stages of axial
compression

Figure 39. Interpolated displacements on uniform grid (top row) and displacements at
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Figure 42. Incremental displacements of particle centers (top row) and particle rotations
Sample A.

- Page 84 -




B3-B4

B2-B3

B3-B4

B2-B3

- Page 85 -

B1-B2

- ~ -~ -~
e N N A ——— e — = O

Nam N NOA AR AR Y - ™ o e -

A N R N e e el
LA SN - ~ R e NN o Ly ~—

(bottom row) between four successive stages of axial compression B1-B4 of

Sample B.

Figure 43. Incremental displacements of particle centers (top row) and particle rotations

Iscussion

D

The experimental technique presented above measures successfully the displacement and
rotation of idealized granular material, and supports some of the results from past




numerical analyses. However, the present procedure is time consuming for large number
of paticles as it requires digitizing three points per particle. More work is required to

develop an automatic vision system that retains the advantages of stereophotogrammetry.
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CONCLUSION

We have investigated shear band instability in granular media, and some of the higher-
order continuum theories proposed to account for instability. We have explored the
micro-macro mechanics transition relevant to material instability, and devised laboratory
experiments for measuring the kinematics of particles. Our methodology combined
computational granular mechanics, higher-order continuum mechanics, and laboratory

experiments.

Our comprehensive review of past work on computational granular mechanics reveals the
diversity of numerical codes in granular mechanics, and the large number of assumptions

entering these codes.

Our theoretical investigation shows that the average stress in granular media, as defined
from virtual work, may be asymmetric in the absence of contact moments. We specify the
circumstances and amplitude of stress asymmetry, and calculate the corresponding couple
stress and first stress moment. We also show that the average stress is always symmetric
when it is alternately defined by using statics and no contact moment. The stress
asymmetry, which results from external moments, has an amplitude that decreases with
the volume size. The asymmetric stress, couple stress and first stress moment are

analytically calculated in particular examples relevant to shear band instability.

Our experimental methodology is based on the application of stereophotogrammetry for
measuring the kinematics of assembly of cylindrical rods, simulating granular media. We
were able to measure the kinematics of a large number of nearly identical particles in the
laboratory. Our experimental methodology has generated new experimental data sets on
granular media useful to re-examine the applicability of higher-order continua on the
response of granular media, and are therefore instrumental to understand material

instability in granular media.
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APPENDIX

Listing of stereophotgrammetric data processing programs used in Part III.

GET_AB calculates of particle center and radius by three
different methods, and calculates particle rotation

INPUT FILES: C1C2.0RI,C2C3.0RI,C3C4.0RI

OUTPUT FILES: BALL_A.OUT,BALL_B.OUT,BALL_C.OUT
AB.OUT
DIAMETER_A.OUT

eleXeoXoNeXoNoNoNoNel

REAL FX1(2,3),FY1(2,3),FX2(2,3), FY2(2,3),FX3(2,3),FY3(2.3)

REAL AX1(2,M),AY1(2,M),BX1(2,M),BY1(2,M),CX1(2,M),CY1(2,M),

& AX2(2,M),AY2(2,M),BX2(2,M),BY2(2,M),CX2(2,M),CY2(2,M),

&  AX3(2,M),AY3(2,M),BX3(2,M),BY3(2,M),CX3(2,M),CY3(2,M)

REAL X1(2,M),Y1(2,M),R1(2,M),X2(2,M),Y2(2,M),R2(2,M),

&  X3(2,M),Y3(2,M),R3(2,M)

REAL DO(M), TA(M), T4(M), T2(M), T3(M), T4(M),D1(2,M),D2(2,M),D3(2,M)
CHARACTER*80 NAME,DIR1,DIR2,T

C Work directory
WRITE(*,'(A,$)") ' Enter Test Aor B: '
READ(*'(A) T
DIR1="F:\WORK\AFOSR\Processing\TEST//TRIM(T)//\Raw\'
DIR2="F:\WORK\AFOSR\Processing\TEST//TRIM(T)//\Processed\'

C Read data from files
NAME=TRIM(DIR1)//C1C2.0RI'
OPEN(1, FILE=NAME,STATUS='0LD")
CALL READ_DATA(FX1,FY1,AX1,AY1,BX1,BY1,CX1,CY1,N1,1)
CLOSE(1)
NAME=TRIM(DIR1)//C2C3.0RI'
OPEN(1, FILE=NAME,STATUS="0OLD")
CALL READ_DATA(FX2,FY2,AX2,AY2,BX2,BY2,CX2,CY2 N2 2)
CLOSE(1)
NAME=TRIM(DIR1)//C3C4.0R}'
OPEN(1, FILE=NAME,STATUS='0OLD’")
CALL READ_DATA(FX3,FY3,AX3,AY3,BX3,BY3,CX3,CY3,N3,2)
CLOSE(1)

C Check data

WRITE(8,*) 'Fixed points 1'

WRITE(6,*) 'D12 =" DIST(FX1(1,1),FY1(1,1),FX1(1,2),FY1(1,2))
WRITE(6,*) 'D23 =',DIST(FX1(1,3),FY1(1,3),FX1(1,2),FY1(1,2))
WRITE(86,*) 'Fixed points 2'

WRITE(6,*) 'D12 =, DIST(FX2(1,1),FY2(1,1),FX2(1,2),FY2(1,2))
WRITE(6,*) 'D23 = ,DIST(FX2(1,3),FY2(1,3),FX2(1,2),FY2(1,2))
WRITE(8,*) 'Fixed points 3'

WRITE(6,*) 'D12 =", DIST(FX3(1,1),FY3(1,1),FX3(1,2),FY3(1,2))
WRITE(6,*) 'D23 =',DIST(FX3(1,3),FY3(1,3),FX3(1,2),FY3(1,2))
WRITE(6,*) '"Number of particles’,N1,N2,N3
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Calculate particle rotation

DO I=1,N1
T1(1)=ATAN2(BY1(1,1)-AY1(1,1),BX1(1,1)-AX1(1,1))
T2()=ATAN2(BY1(2,1)-AY1(2,1),BX1(2,1)-AX1(2,1))
T3(1)=ATAN2(BY3(1,)-AY3(1,1},BX3(1,1)-AX3(1,1))
T4()=ATAN2(BY3(2,1)-AY3(2,1),BX3(2,1)-AX3(2,1))
END DO

Calculate particle center and radius by Method A

CALL PARCEN_A(X1,Y1,R1,AX1,AY1,BX1,BY1,CX1,CY1,N1)
CALL PARCEN_A(X2,Y2,R2,AX2,AY2,BX2,BY2,CX2,CY2 N2)
CALL PARCEN_A(X3,Y3,R3,AX3,AY3,BX3,B8Y3,CX3,CY3,N3)

Write ouput results
NAME=TRIM(DIR2)//BALL_A.OUT
OPEN(4,FILE=NAME,STATUS="UNKNOWN")
CALL WRITE_BALL(X1,Y1,R1,X3,Y3,R3,T1,T2,73,T4,N1)
CLOSE(4)
NAME=TRIM(DIR2)//DIAMETER_A.OUT'
OPEN(4,FILE=NAME,STATUS="UNKNOWN)
WRITE(4,'(6(5X,A4))) 'D1''D2','D2','D3','D3','D4’
DO i1=1,N1

WRITE(4,'(6F 12.5)) 2.*R1(:,1),2.*R2(:,1),2.*R3(:,1)
END DO

CLOSE(4)

Calculate particle center and radius by Method B

DO [=1,N1
AB=DIST(AX1(1,1),AY1(1,),BX1(1,1),BY1(1,1))
DO()=(-(X1(1,H)-AX1(1,))*(BY1(1,)-AY1(1,1)+

& (Y1(1.1)-AY1(1,0)*(BX1(1,1)-AX1(1.1)) )/AB

END DO

CALL PARCEN_B(X1,Y1,R1,AX1,AY1,BX1,BY1,D0,N1)
CALL PARCEN_B(X2,Y2,R2,AX2,AY2,BX2,BY2,D0O,N2)
CALL PARCEN_B(X3,Y3,R3,AX3,AY3,BX3,BY3,D0,N3)

Wirite ouput results

NAME=TRIM(DIR2)//BALL_B.OUT
OPEN(4,FILE=ENAME,STATUS="UNKNOWN')

CALL WRITE_BALL(X1,Y1,R1,X3,Y3,R3,T1,T2,T3,T4,N1)
CLOSE(4)

Calculate particle center and radius by Method C

DO I=1,N1
TA()=DO()/DIST(AX1(1,1),AY1(1,1),BX1(1,1),BY1(1,1))
END DO

CALL PARCEN_C(X1,Y1,R1,AX1,AY1,BX1,BY1,TAN1)
CALL PARCEN_C(X2,Y2,R2,AX2,AY2,BX2,BY2,TA N2)
CALL PARCEN_C(X3,Y3,R3,AX3,AY3,BX3,BY3,TA,N3)

Wirite ouput results

NAME=TRIM(DIR2)//BALL_C.OUT
OPEN(4,FILE=NAME,STATUS="UNKNOWN)

CALL WRITE_BALL(X1,Y1,R1,X3,Y3,R3,T1,T2,T3,T4,N1)
CLOSE(4)

Calculate distance AB and diameter

DO 1=1,N1

DO J=1,2
D1(J,)=DIST(AX1(J,1),AY1(J,1),BX1(J,1),BY1(J,1))
D2(J,)=DIST(AX2(J,1),AY2(J,1),BX2(J.1),BY2(J 1))
D3(J,1)=DIST(AX3(J,1),AY3(J,1),BX3(J,1),BY3(J.1))
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END DO
END DO

NAME=TRIM(DIR2)//AB.OUT
OPEN(4,FILE=NAME,STATUS="UNKNOWN')
WRITE(4,'(6(5X,A4))) 'AB1'/AB2''AB2' '/AB3' 'AB3' 'AB4'
DO I=1,N1

WRITE(4,(6F12.5)") D1(..1),D2(:,1),D3(..1)

END DO

CLOSE(4)

END

SUBROUTINE PARCEN_A(X,Y,R,AX,AY,BX,BY,CX,CY,N)
INTEGER N
REAL X{2,N),Y(2,N},R(2,N),AX(2,N),AY(2,N), BX(2,N),BY(2,N),CX(2,N),CY(2,N)
C PARCEN_A calculate the center and radius of particles with 3 points
C Inpu
C N total number of particles
C AXAY,BX,BY.CX,CY: coordinates of points A, B and C
C Output
c XY center position
C R radius

C——

DO I=1,N

DO J=1,2

A=AX(J,))-BX(J.1)
B=AY(J,1)-BY(J,])
E=(AY(J.1)**2-BY(J,1)**2+AX(J,1)**2-BX(J,1)**2)/2.
C=AX(J.))-CX(J.1)
D=AY(J,)-CY(J,])
F=(AY(J,)**2-CY(J,1)**2+AX(J,1)**2-CX(J,1)**2)/12.
X(J,)=(E*D-B*F)/(A*D-B*C)
Y(J.l)=(A*F-E*C)/(A*D-B*C)
R(J.N=DISTX(J.1), Y(J.1),AX(J,1),AY(J, 1))

END DO

END DO

END

SUBROUTINE PARCEN_B(X,Y,R,AX,AY,BX,BY,DO,N)
INTEGER N
REAL X(2,N),Y(2,N),R(2,N),AX(2,N),AY(2,N),BX(2,N),BY(2,N),DO(N)
C PARCEN_B calculate the center and radius of particles
C with constant vector DO
Inpu
N: total number of particles
AX,AY,BX,BY coordinates of points A and B
DO constant length DO
Output
XY: center position
R: radius

(eXoNoXoNoNo e Ne]

DO I=1,N
DO J=1,2
XX=BX(J,)-AX(J,1)
YY=BY(J,)-AY(J,1)
X(JD=(AX(J,)+BX(J,1)/2.-YY*DO(I)/SQRT(XX**2+YY**2)
Y(J.1)=(AY(J.1)+BY(J,)/2.+XX*DO(1)/SQRT(XX**2+YY**2)
R(J.)=DIST(X(J,1),Y(J.1), AX(,1),AY(J, 1))
END DO
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END DO
END

C

SUBROUTINE PARCEN_C(X,Y,R,AX,AY,BX,BY,TA,N)

INTEGER N

REAL X(2,N),Y(2,N),R(2,N),AX(2,N),AY(2,N),BX(2,N),BY(2,N), TA(N)
C PARCEN_C calculate the center and radius of particles with method C

C with constant angle ALPHA
C input
C N total number of particles
C AXAY,BXBY coordinates of points A and B
C ALPHA constant angle
C Output
c XY center position
C KR radius
C ___________
DO I=1,N
DO J=1,2

X(D)=(AX(, D+BX(J, D)2 TA)(BY(J,H-AY(J,1)
Y(LD=(AY( +BY(J, D)2+ TA()(BX(J,1)-AX(J, 1)
R(J1)=DISTX(.1), Y(J1),AX(J,),AY(J,1))

END DO

END DO

END

C-—

SUBROUTINE READ_DATA(FX,FY,AX,AY,BX,BY,CX,CY,N,K)
REAL FX(2,1),FY(2,1),
& AX(2,1),AY(2,1),BX(2,1),BY(2,1),CX(2,1),CY(2,1)

REAL CNX(2,4),CNY(2,4)

C read rotation D and translation (DX,DY) of global data
READ(1,*) D1,0X1,DY1
IF(K==2) THEN
READ(1,”) D2,DX2,DY2
ELSE
D2=D1
DX2=DX1
DY2=DVY1
ENDIF
C read XMIN,XMAX,YMIN,YMAX of global data
READ(1,*) XMIN, XMAX,YMIN,YMAX
C read fixed points
DO i=1,3
CALL READ_PT(FX(1,1),FY(1,1),DX1,DY1,D1,DX2,DY2,D2 K)
END DO
C read coordinates of corners
DO I=1,4
CALL READ_PT(CNX(1,l),CNY(1,1),DX1,DY1,D1,DX2,DY2,D2,K)
END DO
C read all points A,Band C
C and select origin at third fixed point
READ (1,") N
DO I=1,N
CALL READ_PT(AX(1,),AY(1,1),DX1,DY1,D1,DX2,DY2,D2,K)
CALL READ_PT(BX(1,1),BY(1,1),DX1,DY1,D1,DX2,DY2,D2,K)
CALL READ_PT(CX(1,1),CY(1,1),DX1,DY1,D1,DX2,DY2,D2,K)
AX(, H=AX(:,)-FX(:,3)
AY( D=AY(,)-FY(,3)
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BX(:,)=BX(:,)-FX(.,3)
BY(:,)=BY(:,)-FY(:,3)
CX(: =CX(.I)-FX(:,3)
CY(:.)=CY()-FY(:,3)
END DO

CLOSE(1)

END

SUBROUTINE READ_PT(X,Y,DX1,DY1,D1,DX2,DY2,D2,K)
REAL X(2).Y(2)

PARAMETER(S=2.1)
READ(1,*) X1,Y1,X2,Y2
IF(K==1) THEN
X(1)=X1
Y(1)=Y1
ELSE
X(1)=(X1-DX1)*COS(D1)-(Y1-DY1)*SIN(D1)
Y(1)=(Y1-DY1)*COS(D1)+(X1-DX1)*SIN(D1)
ENDIF
X(2)=(X2-DX2)*COS(D2)-(Y2-DY2)*SIN(D2)
Y(2)=(Y2-DY2)*COS(D2)+(X2-DX2)*SIN(D2)
C scale length to obtain mm

X=8*X

Y=8*Y

END
C ——————

REAL FUNCTION DIST(X1,Y1,X2,Y2)
C—— e et S o e e i i 4 £ e e S T S e B Y A e et % T T e e e e e e S T ST P T o

DIST=SQRT((X1-X2)**2+(Y1-Y2)**2)

END
C ——————

SUBROUTINE WRITE_BALL(X1,Y1,R1,X3,Y3,R3,T1,T2,T3,T4,N)
REAL X1(2,N),Y1(2,N),R1(2,N),X3(2,N),Y3(2,N),R3(2,N),
&  T1(N), T2(N), T3(N), T4(N)

WRITE(4,*) N
WRITE(4,(16(5X,A5))) 'X1'/'Y1"'R1,'T1"/X2"'Y2''R2''T2',
& X3 'Y3''R3,'T3 X4 'Y4' ‘R4, T4

DO I=1,N
WRITE(4,'(16(1X,F9.4)))X1(1,1).Y1(1,),R1(1,1), TA(1),

& X1(2,1).Y1(2,)).R1(2,1),T2(),

& X3(1,1),Y3(1,1),R3(1,1), T3(1),

& X3(2,1),Y3(2,1),R3(2,1), T4(l)

END DO

END
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DISP_ROT plots displacement vector and rotation of particles
INPUT FILE: BALL_A.OUT

(@]

c

c

PARAMETER (M=2000)

CHARACTER*256 LABEL

REAL X1(M),Y1(M),R1(M), T1(M),.X2(M),Y2(M),R2(M), T2(M),
&  X3(M),Y3(M),R3(M),T3(M),X4(M),Y4(M),R4(M), T4(M)
CHARACTER*80 NAME,DIR2, T

SCALE=S.

Work directory

WRITE(*,'(A,$)") ' Enter TestAor B:’

READ(*(A)) T
DIR2='F:\WORK\WFOSR\Processing\TEST//TRIM(T)//\Processed\

Read center position and radius
NAME=TRIM(DIR2)//BALL_A.OUT
OPEN(1,FILE=NAME,STATUS='0OLD’)
READ(1,*) N1
READ(1,(A)) LABEL
DO I=1,N1

READ(1,*) X1(1), Y1(1),R1(1), T1(1),X2(1),Y2(1),R2(1), T2(1),
& X3(1), Y3(1),R3(1), T3(1),X4(1), Y4(1), R4(1), T4(l)
END DO
CLOSE(1)

Plotting extrema
XMIN=MINVAL(X1(1:N1))
XMAX=MAXVAL(X1(1:N1))
YMIN=MINVAL(Y1(1:N1))
YMAX=MAXVAL(Y1(1:N1))
W=ABS(XMIN-XMAX)
H=ABS(YMIN-YMAX)
XMIN=XMIN-0.05*W
XMAX=XMAX+0.05*"W
YMIN=YMIN-0.05*H
YMAX=YMAX+0.05*H

Draw displacement vectors
NAME=TRIM(DIR2)//DISP_ROT.GIF/GIF'
CALL PGBEGIN(0,NAME,1,1)

CALL PGSCR(0, 1., 1., 1.) !black becomes white
CALL PGSCR(1, 0.,0.,0.) Iwhite becomes black
CALL PGQVP(0,XP1,XP2,YP1,YP2)

CALL PGVPORT(0.1,0.3,0.5,0.9)

CALL PGWNAD(XMIN,XMAX,YMIN,YMAX)
DO I=1,N1

CALL ARROW(X1()),Y1(I),X2()),Y2(1))
END DO

CALL PGVPORT(0.3,0.5,0.5,0.9)

CALL PGWNAD(XMIN,XMAX, YMIN,YMAX)
DO I1=1,N1

CALL ARROW(X2(1),Y2(1),X3(1),Y3(1))
END DO

CALL PGVPORT(0.5,0.7,0.5,0.9)

CALL PGWNAD(XMIN,XMAX,YMIN,YMAX)
DO I=1,N1

CALL ARROW(X3(1),Y3(1),X4(1),Y4(l})
END DO
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C Draw rotation
CALL PGVPORT(0.1,0.3,0.1,0.5)
CALL PGWNAD(XMIN,XMAX, YMIN,YMAX)
DO I=1,N1
CALL PIE(X1(I),Y1(1),R1(1), T1(1),T2(),SCALE)
END DO
CALL PGVPORT(0.3,0.5,0.1,0.5)
CALL PGWNAD(XMIN, XMAX,YMIN,YMAX)
DO I=1,N1
CALL PIE(X2(1),Y2(I),R2(1),T2(]), T3(I), SCALE)
END DO
CALL PGVPORT(0.5,0.7,0.1,0.5)
CALL PGWNAD(XMIN, XMAX,YMIN,YMAX)
DO I=1,N1
CALL PIE(X3(1),Y3(I),R3(I),T3(1), T4(l), SCALE)
END DO
CALL PGEND
END

C
C*ARROW
C+

SUBROUTINE ARROW(XO0,Y0,X1,Y1)
Cc
C ARROW plots a vector from (x0,y0) to (x1,y1)
C—

c
REAL X(3).Y(3)
PARAMETER (ANG=0.44,TIP=0.2,ZMIN=0.1)
Z=SQRT((X1-X0)**2+(Y1-Y0)**2)
IF(Z<ZMIN) RETURN
X(1)=X0
Y(1)=Y0
X(2)=X1
Y(2)=Y1
CALL PGLINE(2,X.Y)
ALF=ATAN2(Y1-Y0,X1-X0)
X(1)=X(2)-Z*COS(ALF-ANG)*TIP
Y(1)=Y(2)-Z*SIN(ALF-ANG)*TIP
X(3)=X(2)-Z*COS(ALF+ANG)*TIP
Y(3)=Y(2)-Z*SIN(ALF+ANG)*TIP
CALL PGLINE(3,X,Y)
END

C_— e s s

C*PIE

C+
SUBROUTINE PIE(X0,YO,R,T0,T1,S)

Cc

C PIE plot a pie of radius R at (X0,Y0) starting from angle TO to T1

C withascaleS

C—

C o e o e
PARAMETER (N=11)
REAL X(N),Y(N)
PI=ATAN(1.)*4.
IF(ABS(T1-T0)<0.001) RETURN
X(1)=X0
Y(1)=Y0
DT=S*(T1-TO)/FLOAT(N-2)
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IF(S*ABS(T1-T0)>2.*PI)DT=2.*PUFLOAT(N-2)

DO 1=2,N-1
T=TO+FLOAT(I-1)*DT
X(H=X(1)+R*COS(T)
Y()=Y(1)+R*SIN(T)

END DO

X(N)=X(1)

Y(N)=Y(1)

CALL PGSFS(1)

CALL PGPOLY(N,X.Y)

END
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STRAIN plots strain field (Desrues' technique)
INPUT FILE: BALL_A.OUT

C

c

USE MSIMSL

PARAMETER (M=2000)

CHARACTER*256 LABEL

REAL X1(M),Y1(M),R1(M), T1(M),X2(M),Y2(M),R2(M), T2(M),
&  X3(M),Y3(M),R3(M), T3(M),X4(M), Y4(M),R4(M), T4(M)
CHARACTER*80 NAME,DIR2, T

SCALE=5.

Work directory

WRITE(*,'(A,$)) ' Enter Test Aor B:'
READ(*'(A) T
DIR2='F\WORK\AFOSR\Processing\TEST//TRIM(T)//"\Processed\'

Read center position and radius
NAME=TRIM(DIR2)//BALL_A.OUT
OPEN(1,FILE=NAME,STATUS='0LD')
READ(1,*) N1
READ(1,'(A)") LABEL
DO 1=1,N1

READ(1,*) X1(1),YA(),R1(1), T1(1),X2(1),Y2(1),R2(1), T2(1),
& X3(1),Y3(1),R3(1), T3(1),X4(1), Y4(1),R4(1), T4(l)
END DO
CLOSE(1)

Plotting extrema
XMIN=MINVAL(X1(1:N1))
XMAX=MAXVAL(X1(1:N1))
YMIN=MINVAL(Y1(1:N1))
YMAX=MAXVAL(Y1(1:N1))
W=ABS(XMIN-XMAX)
H=ABS(YMIN-YMAX)
XMIN=XMIN-0.05*W
XMAX=XMAX+0.05*W
YMIN=YMIN-0.05*H
YMAX=YMAX+0.05*H

Plot shear strain at centers of grid
NAME=TRIM(DIR2)//'Strain.gif/GIF'

CALL PGBEGIN(0,NAME,1,1)

CALL PGSCR(0, 1., 1., 1.) 'black becomes white

CALL PGSCR(1, 0.,0.,0.) !white becomes black

CALL PGQVP(0,XP1,XP2,YP1,YP2)

CALL PGVPORT(0.1,0.3,0.5,0.9)

CALL PGWNAD(XMIN,XMAX,YMIN,YMAX)

CALL STRAIN(X1,Y1,X2,Y2,N1,XMIN, XMAX, YMIN,YMAX)
CALL PGVPORT(0.3,0.5,0.5,0.9)

CALL PGWNAD(XMIN, XMAX YMIN,YMAX)

CALL STRAIN(X2,Y2,X3,Y3,N1,XMIN,XMAX,YMIN,YMAX)
CALL PGVPORT(0.5,0.7,0.5,0.9)

CALL PGWNAD(XMIN,XMAX, YMIN,YMAX)

CALL STRAIN(X3,Y3,X4,Y4,N1,XMIN,XMAX,YMIN,YMAX)

Plot displacement vectors

CALL PGVPORT(0.1,0.3,0.1,0.5)

CALL PGWNAD(XMIN,XMAX,YMIN,YMAX)
DO I=1,N1
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CALL ARROW(X1(1),Y1(1),X2(1),Y2(1))
END DO

CALL PGVPORT(0.3,0.5,0.1,0.5)

CALL PGWNAD(XMIN,XMAX,YMIN,YMAX)
DO 1=1,N1

CALL ARROW(X2(I),Y2(1),X3(1),Y3(1))
END DO

CALL PGVPORT(0.5,0.7,0.1,0.5)

CALL PGWNAD(XMIN,XMAX,YMIN, YMAX)
DO I=1,N1

CALL ARROW(X3(1),Y3(}).X4(1),Y4(1))
END DO

CALL PGEND

END

C
C*STRAIN
C+

SUBROUTINE STRAIN(X1,Y1,X2,Y2,N1,XMIN, XMAX,YMIN,YMAX)

REAL X1(N1),Y1(N1),X2(N1),Y2(N1),XMIN, XMAX,YMIN,YMAX
Cc
C STRAIN plots a square symbol to represent shear strain
C—

C o e o o e
PARAMETER (NX=25,NY=50)
REAL XL(2,4),VL(2,4),XG(NX),YG(NY),EPS(3)
REAL DET,SHL(3,4),SHG(3,4),B(3,8)
REAL,ALLOCATABLE:: XY(:,:), WX(:),WY(), VX(:,:).VY(:,:),GAM(.,:)

C Define local shape functions
CALL QUAD_SHL(SHL)

C Define grid points
XXMAX=XMAX-0.1*(XMAX-XMIN)
XXMIN=XMIN+0.1*(XMAX-XMIN)

DO I=1,NX
XG(1)=XXMIN+XXMAX-XXMIN)*(I-1)/FLOAT(NX-1)

END DO

YYMAX=YMAX-0.1*(YMAX-YMIN)

YYMIN=YMIN+0.1*(YMAX-YMIN)

DO I=1,NY
YG(I)=YYMIN+(YYMAX-YYMIN)*(I-1)/FLOAT(NY-1)

END DO

C Calculate disptacement at grid points
IF(ALLOCATED(XY)) DEALLOCATE(XY WX WY, VX VY ,GAM)
ALLOCATE(XY(2,N1), WX(N1),WY(N1),VX(NX,NY),VY(NX,NY))
ALLOCATE(GAM(NX-1,NY-1))
XY(1,))=X1(:N1)
XY(2,:)=Y1(:N1)
WX=X2(:N1)-X1(:N1)
WY=Y2(:N1)-Y1(:N1)
CALL SURF(N1,XY,WX,NX NY XG,YG,VX,NX)
CALL SURF(N1,XY WY ,NX,NY XG,YG,VY,NX)

C Calculate strain at grid points
DO 1=1,NX-1
DO J=1,NY-1
XL(1,1)=XG(1)
- XL(1,2)=XG(I1+1)
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XL(1,3)=XG(1+1)
XL(1,4)=XG(l)
XL(2,1)=YG(J)
XL(2,2)=YG(J)
XL(2,3)=YG(J+1)
XL(2,4)=YG(J+1)
CALL QUADSHG(XL,SHL,SHG,DET)
B=0.
B(1,1::2)=SHG(1,)
B(2,2::2)=SHG(2,:)
B(3,1::2)=SHG(2,)
B(3,2:2)=SHG(1,)
VL(1,1)=VX(,J)
VL(1,2)=VX(1+1,J)
VL(1.3)=VX(1+1,J)
VL(1,4)=VX(,J)
VL(2,1)=VY(,J)
VL(2.2)=VY(l,J)
VL(2,3)=VY(l,J+1)
VL(2.4)=VY(l,J+1)
EPS=MATMUL(B(:,:),RESHAPE(VL,(/8/)))
GAM(,J)=SQRT((EPS(1)-EPS(2))"*2+EPS(3)**2)
END DO
END DO

C Plot square symbol at center of grid

SMAX=10.

GMAX=MAXVAL(GAM)

DO =1,NX-1

DO J=1,NY-1
XX=(XG(1)+XG(1+1))/2.
YY=(YG(J)+YG(J+1))/2.
CALL PLOT_SQUARE(XX,YY,GAM(l,J), GMAX,SMAX)
END DO

END DO

END

C ————————— ———
SUBROUTINE QUADSHG(XL,SHL,SHG,DET)

REAL XL(2,4),DET,SHL(3,4),SHG(3,4)

QUADSHG calculates global derivatives of shape functions and
jacobian determinant for a four node quadrilateral element
XL(J,1) global coordinate
DET jacobian determinant
SH(1,h) local Xl derivative of shape function
SH(2,1) local ETA derivative of shape function
SH(3,1) local shape function
SHG(1,1)x derivative of shape function
SHG(2,l)y derivative of shape function
SHG(3,1)shape function
l

J global coordinate number

eXeXoXeXolo oo XeNoXoNo N o

local node number or global coordinate number

REAL XS(2,2), TEMP
SHG=SHL

XS=MATMUL(SHG(1:2,:), TRANSPOSE(XL(1:2,:)))
DET=XS(1,1)*XS(2,2)-XS(1,2)*XS(2,1)
XS=XS/DET

DET=4."DET
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DO I1=1,4
TEMP=XS(2,2)*SHG(1,1}-XS(1,2)*SHG(2,1)
SHG(2,1)=-XS(2,1)*SHG(1,1)+XS(1,1)*SHG(2,1)
SHG(1,1)=TEMP

END DO
END
C—.—
C*QUAD_SHL
C+
SUBROUTINE QUAD_SHL(SHL)
REAL SHL(3,4)
C QUAD_SHL calculates shape functions and local derivatives for element QUAD
C SHL(1,1) local Xl derivative of shape function
Cc SHL(2,1) local ETA derivative of shape function
C SHL(3,1) local shape function
C | local node number
C—
C _________
REAL RG(4),SG(4)
DATA RG/-0.5, 0.5,0.5,-0.5/
DATA SG/-0.5,-0.5,0.5, 0.5/
DO =14
SHL(1,1)=0.5*RG(I)
SHL(2,)=0.5*SG(l)
SHL(3,1)=0.25
END DO
END
C
C*PLOT_SQUARE
C+
SUBROUTINE PLOT_SQUARE(X,Y,V,VMAX,SMAX)
C PLOT_SQUARE plots a square at position (X,Y) proportional to V
o
C Input
C XY location where to center square
c Vv value
C VMAX maximimum value corresponding to maximum size SMAX
C SMAX maximum size for square
c
C—-
C e v
REAL XR(5),YR(5)
C define square
D=V/VMAX*SMAX
XR(1)=X-D/2.
YR(1)=Y-D/2.

C

XR(2)=XR(1)+D
YR(2)=YR(1)
XR(3)=XR(2)
YR(3)=YR(2)+D
XR(4)=XR(3)-D
YR(4)=YR(3)
XR(5)=XR(1)
YR(5)=YR(1)

fult for V>0, hollow for V<0
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CALL PGSCI(1)

CALL PGSFS(2)

CALL PGPOLY(5,XR,YR)
RETURN

END

C*ARROW

C+

Cc

SUBROUTINE ARROW(X0,Y0,X1,Y1)

C ARROW plots a vector from (x0,y0) to (x1,y1)
C—

c

REAL X(3),Y(3)

PARAMETER (ANG=0.44,TIP=0.2,ZMIN=0.1)

Z=SQRT((X1-X0)**2+(Y1-Y0)**2)
IF(Z<ZMIN) RETURN

X(1)=X0

Y(1)=Y0

X(2)=X1

Y(2)=Y1

CALL PGLINE(2,X.Y)
ALF=ATAN2(Y1-Y0,X1-X0)
X(1)=X(2)-Z*COS(ALF-ANG)*TIP
Y(1)=Y(2)-Z*SIN(ALF-ANG)*TIP
X(3)=X(2)-Z*COS(ALF+ANG)*TIP
Y(3)=Y(2)-Z*SIN(ALF+ANG)*TIP
CALL PGLINE(3,X,Y)

END

- Page 128 -




ACKNOWLEDGMENT

This document reports on the research sponsored by the AFOSR grant (F49620-93-1-
0295) augmented by the AASERT extension (F49620-95-1-0420). This work has been
partially supported by the Air Force Office of Scientific Research, the National Science
Foundation, and by the ALERT program of the European Community. The AFOSR grant
(F49620-93-1-0295) was augmented by an AASERT grant (F49620-95-1-0420) to
support Julie Young, who subsequently to this award was granted a NSF fellowship in
1998. The authors are thankful to I. Vardoulakis of the National Technical University of
Athens, Greece, and J. Desrues and D. Caillerie of the University Joseph Fourier of
Grenoble, France, for valuable comments. The authors also thanks Dr. Nakase of the

EPRI, Japan, for making available its discrete materials.




TABLE OF CONTENTS

ADSITACE c.veuveirrerrereeiesneenessessesessesssssessissenessessessassassassasssessssssssess rereveeressessessneaesanenenan w3
ACKNOWIEAGIMENL ...ttt st sssssssssasns s snsneses ceeveeenenens SR
INtroduction......ccceveereencceesensesesunsnsnsessennes eeeteebestereeberaerresesteaeste st betester e s s b et s raasernsraene R |
Shear band INStADILILY.......cocceurrruriiririiiriirireee sttt 1
Research objectives and report Organization ........e.ceescsesisisisescniasisisiensnsiessnsnssessssnens 5
Part 1. Granular mechanics............. saeasessassasestessesessreasresatIteAINLaLLaRaRSSRebss R bR BB SR O SRR s e SRR SS 6
INtrOAUCHION. ..cvvereererreeeeeeertercsrisseseesnesessessessssas s s asesss reeereestesnesressassaensterternseraesaenas 6
Examples of discrete modeling in s0il MEChANICS ..cuueuueumcremciiiiiiiiiiiinitsnssieiene 7
EXAMPIE 1 c.ervevecnceriniiiciiiacisae et sssssssess st ssssssa st st s sssaes vl
EXAMPIE 2 ...ttt b s s s 9
Applications of discrete modeling in engineering and applied SCIENCES .......cceuurernrunns 10
Discrete and continuous MOAEIING.......cocviriniiiiinrirnrininrirene ettt ssansssaens .13
Limitations of discrete modeling in s0il MEChANICS ....coovevirrivenricnriiinieeeeesiciiinne 14
Numerical methods for discrete MOdeling......c.ccoevvivriviineninneneniinineneeee s 14
Physical modeling of granular media ................. reerrebeste e be sttt a s a b e bs vereenns 17
GEOMELTY Of GLAINS ...ocucececninirirriererieiee ettt s s w17
PATTICIES .ccuveeverererirreereereeseeeeresseesessessessessesstssesraestebesaa s b e s s et e s s assesnesnsensessasnssbentssnnens 18
CONEACES..cuvererreerrensrerseeserstessesssaesesestssssssesssossesssnessssssassssssssssssssssssssssessessatssnnes crvesnees 20
CONLACE MOAEIS....cuvierieeieriierrereeeseesesesseesesseesesssessnessesssesnassssessassassassassassasssssssssasas 31
Governing equations Of SLALICS ........cvurvirrirrereisisssnessiste e 35
Boundary conditions ........coouveeeeevesseesissnsssnssessssssnensies veeeveerreneestesnessens 36

Part II. Transition from discrete to continuoUs MEdia ......cccceververeinerieninnrennsveesessisnsnnens 39
BaCKZIOUNG.....cucurveviiiiiiiiiiiesesene st ssebe st sassstsnasses st s s s ns 39
GranUIar MEAIUIM ...vovvecreereeieeerereeerreesteeae st sres st saesas s s e sasesaa s asassnaentsssessssnsssssnsans 39
DIELINIEION ceveenveneierierrererterrertertessesteeseoee st st et sesesbessssnessesbassasssessasnassnessssssssssatossesaes 39
Virtual work in granular media........iivennnnieninneeecceiisas 44
Continuum for granular Media........cceeerieriiniienninine s 46
Definition of average stresses in granular media........o.oeeiiiennsenieecnccsnineennnniinen A48

AVETAZE SITESS ..vvueucniririririnrrerereseseteresesessassesstssesssstststssssstssst sttt bsbsnsasbsasssasssnsas 48




SYMMELrY Of AVETAZE SITESS .ovuvuersrresrisessesscssisnmsssssisisssssrsisssssss s ssssssescssscsscaseases 49

Average micropolar stress and first moment of Stess .....cuvuerinieiisisenesisesesinneee 50
Alternate definition of AVETrage SIrESS .....covvuiriimrereieienisnnesscsesesisssccsistnsicntssassnsaesas 50
EXAMPIES..cururueeuerreneiisiseinisetsni st ssss st s s sescssmssasss s s e sttt 52

Example 1: Double layer interface .......oceceeuevenmneviniiiiiiiiitnnssiccsiscnenne 52

Example 2: Multi-layer interface .......ooweveeeececneniiiiniscnse 54
D ISCUSSION .eeveveveneereresessesresesersesesesasassesentesesessasestoscressessensasassssssssassassassssstosssssasssstssssaeas 58
CONCIUSION caveveeverereriieeresseseeesesseseencessssetssessesssssasessassassssasnssnssassssssssssstssssssssessssssnns 58

Part I11. Experimental inVestigation ......cvveeerncesimnieiiscininiiisnnsenssnsesn s 59
BaCKZIOUN ...eceveueveemiecuisissiise bttt bbb bt stass 59
Axial compression of idealized granular media ... 61

Sample composition and fabriCatioN.......ccccecvcurinimimniiei s 61

Experimental setup for axial COMPIESSION ......ccueeurvruiniieinmsiininiieisiisiessissiseciseaeess 63

RESUIS veuveeeereeairsisseeresireesesesessestssessessessestssertessesessessantonessessessesessessestsssssssssssesssssssanes 64
Stereophotogrammetry MEasurement ........cucueurisiuscuismnssssssissesisissssnssisssssscssnsessincasens 65

Principle of stereophotogrammetry for measurement of displacement............ccoecevc.. 65

Application of stereophotogrammetry to kinematics of particles..........couweeeesennnes 66
Determination of Assembly GEOMEIY ......couvvevrveiveimrisseneeitetsniensitsis s 68

Assumption of rigid PArtiCles.......owemrrrieininescenciisiiiin 68

Particle center and TadiUS .......ecvereirerreriiesiecsiesiensieesieerresssessesresssesseessesssssssesassssnenes 69

Particle angular POSILiON .......ccieuereiiiiiiiereisnnisisnecseestsiststtst s 75
Interpretation Of RESUILS......ccveierieinirieeeictse i csacnses 78

Stereophotogrammetric VISUalIZation ...t 78

Particle diSPlacement ........ccueuerreiniressisniniceensestessst it 79

SHEAT SLEAIM...ueeeevirireirreeeeereeereriseesesssessesssesseeessessnesseesasssesssesssassesssesssessssssassensssssnrese 79

PartiCle TOLAtION ...ccververeterreeeeeeescsret et be st e e e e s e e e e st st sbs b ue s s nsaneanens 79
DISCUSSION c.veveevireererereerereseeeesesessetesssessesisesseasaesasbss s st s et ssa s ssent s sannsatsssresnsasatarnsess 85

CONCIUSION «.evviereriererererseseesseseessescssesestesesestestssssassrs st ass b et e sasssseseatssstssssssistssssssssssensaes 87
RETETENCES .....veverreeererieseesesessessessessssceeessesessssestesssessessessessssessesssssssssestonsssssssnsssssnsssssnntes 88

ADPPENAIX ..ceceerernrericseniitisiaiae st et s e s 116




INTRODUCTION

Among engineering materials, granular materials experience the most complicated and
diversified types of instabilities, owing to their particulate and multiphase structures.
These instabilities include surface instability (e.g., rockburst and exfoliation), volume
instability (e.g., buckling and arching), localized instability (e.g., shear bands), and fluid-
grain interaction instability (e.g., liquefaction). These various types of instability have
been observed in the field, in association with global and/or local failures of
geomaterials. They have been reproduced and studied in the laboratory, and analyzed by
using continuum mechanics. However, the physical origins of instabilities in geomaterials

are still poorly understood.

The present research is focused on shear band instability in granular media, and
especially on the physical origins of these instabilities. In the following review of past
work, we intend to show that past continuum theories are based on diverse assumptions,

and rely on semi-intuitive arguments not necessarily founded on physical observations.

Shear band instability

Most constitutive models for geomaterials describe their mechanical behavior through
stress-strain relationships, which have no internal characteristic length specific to
materials. This macro-description postulates that the responses of small laboratory
specimens are the scaled responses of larger granular masses in the field. In the absence
of instability, macro-continuum mechanics has been successfully used to calculate
stresses and strains in solids. It has also been successful to explain some aspects of the
unstable behavior of geomaterials, such as surface and volume instability (Hill and
Hutchinson, 1974; Vardoulakis, 1979, 1981, and 1988; Vardoulakis and Graf, 1985;
Bardet, 1991) and the inclination of shear bands (Rudnicki and Rice, 1975; Rice, 1976;
Vardoulakis, 1980; Bardet, 1991). However, without an internal length, macro- theories
simply fail to describe the thickness of shear bands, which was found to be about eight
times the mean grain size in granular materials (e.g., Miihlhaus and Vardoulakis, 1987).

The thickness of shear bands is an internal length that does not scale with the specimen
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size. When a continuum theory ignores this internal length, the numerical solution of
boundary value problems leads to strain-softening response and localized deformation

that strongly depend on mesh sizes (e.g., de Borst and Sluys, 1992).

Four alternate types of continuum theory with an internal length have been proposed to
describe shear band instability in geomaterials. These approaches are: 1) higher order
strain gradient theory, 2) micropolar theory, 3) nonlocal theory, and 4) viscous

regularization.

Higher order strain gradient approach

Zbib and Aifantis (1989) introduced higher order strain gradients into continuum models
to ascribe an internal length to materials and to capture the thickness of shears bands.
Zbib and Aifantis (1988) derived analytical solutions for the post-bifurcation structures of
shear bands, which are in agreement with experimental observations on metals.
Vardoulakis and Aifantis (1989) investigated the effects of gradient dependent dilatancy
on shear bands and liquefaction instabilities within saturated sands. Their assumption of
gradient dependent dilatancy invokes basic microscopic considerations for two-
dimensional materials. Their theory produces the thickness of shear bands, and creates
liquefying strips in saturated sand specimens. However, in their dilatancy relationship,
they replaced a factor 1/2 by an "unspecified dimensionless coefficient to be determined
from experiment." They did not clearly explain the physical origins of gradient dependent

dilatancy and liquefaction patterns either.

The gradient effects on yield and plastic potential surfaces are difficult to exhibit and
calibrate by experiments on geomaterials. Oka et al. (1991) applied the higher order
gradient approach to clays. Oka calibrated the coefficients of higher order effects by trial
and error to produce the desirable shear band thickness. There is a definite need for
developing a approach for investigating the physical justification of higher order

gradients in particulate media.
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Micropolar approach

The micropolar theory (Eringen, 1966, 1968) is a continuum version of the structural
theory of Cosserat (1909). It enriches the kinematics and kinetics of continua by adding
material rotations and couple stresses. Using a micropolar approach similar to Kanatani
(1979), Miihlhaus and Vardoulakis (1986) explained the emergence, orientation and
thickness of shear bands in granular materials. Bardet and Proubet (1992a) used a similar
linear stability analysis and micropolar description, and investigated the structure of
persistent shear bands in idealized granular media. They successfully described the
thickness of shear bands and the relation between particle rotation and displacement
within persistent shear bands. However, the coefficients of their micropolar models,
based on the flow or deformation theory of plasticity, had to be set to unrealistic values to

reproduce the observations.

Chang et al. (1990, 1991, 1992) developed micropolar theories for granular materials
based on microscopic models. They derived the micropolar constants in terms of the
inter-particle stiffness, and investigated the micropolar effects on the solution of selected
boundary value problems. Chang derived stress-strain relationships without examining
their effects on material instability. He did not investigate the problem of strain

localization as De Borst and Sluys (1992).

Dietsche et al (1991) examined the micropolar effects on bifurcation, without justifying
the physical origins of their continuum assumptions. Their study assesses only the

micropolar effects on the uniqueness of boundary value problems.

Like the higher order gradient theory, the micropolar theory introduces an internal length
in boundary value problems. However, there is still need for establishing the physical

relevance of the micropolar theory for the instability in particulate media.

Nonlocal continuum approach

Nonlocal continuum mechanics (Bazant, 1991 and 1992; Eringen, 1992; Valanis, 1992) is
especially suited for investigating material instability and strain softening. Nonlocal

continuum mechanics replaces the local stress by an average stress, which is the integral
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of the weighted local stress over a material volume. Nonlocal models possess an internal
length that relates to the thickness of shear bands (Bazant and Pijaudier-Cabot, 1988).
Nonlocal models have been especially designed to assess damage in brittle materials
(e.g., concrete) with cohesive granular bonds (Ju, 1991). Recently, Bazant (1992)
introduced a new concept of nonlocal damage based on the micromechanics of crack
interaction, and therefore established the physics for the spatial averaging integral and
weight function employed in nonlocal models. However, the concept of crack interaction
and propagation does not apply to a random packing of particulate media with
cohesionless contacts. The damage concept seems more applicable to cemented or
overconsolidated soils, for which cohesive bonds can be damaged and broken. However,
the damage concept appeals for describing the strain softening of dense sands, which is

attributed to stress-dilatancy.

Viscous regularization

The dissipative properties of physical viscosity introduce an internal length, which relates
to the thickness of shear bands in metals under dynamic loads (e.g., Perzyna, 1991).
Artificial viscosity, referred to as viscous regularization, was first introduced for
capturing shock waves (Lapidus, 1967). Loret and Prevost (1990) adapted it for
geomaterials to capture the thickness of shear bands. However, the viscosity measured for
granular materials in the laboratory is much smaller than the artificial viscosity required
for capturing the thickness of shear bands. The diffusion of pore-water generates viscous
effects (Bardet, 1992) that are also too small for explaining shear bands. The introduction
of artificial viscosity in geomaterials seems to be a numerical expedient deprived of
physical justification. This numerical artifice requires an excessively large artificial
viscosity which unrealistically attenuates waves and accelerations within boundary value

problems.

The continuum theories - higher order gradient theory, micropolar theory, nonlocal
theory, and viscous regularization - agree on the necessity of introducing an internal
length. They justify their assumptions by the need to limit localization in the numerical
solution of boundary value problems. Their diverse assumptions rely on semi-intuitive

arguments not necessarily founded on microscopic observations for particulate media.
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